2012 Mathematics (1)

This pdf was generated from questions and answers contributed by members of the public to Christopher Lester's tripos/example-sheet solution exchange site http://cgl20.user.srcf.net/. Nothing (other than raven authentication) prevents rubbish being uploaded, so this pdf comes with no warranty as to the correctness of the questions or answers contained. Visit the site, vote, and/or supply your own content if you don't like what you see here.
This pdf had url http://cgl20.user.srcf.net/camcourse/paperpdf/12? withSolutions=1. This pdf was creted on Thu, 18 Apr 2024 22:23:48 +0000.

Section A

1

No image has yet been uploaded for this question
No soution has yet been submitted for this question.

2

No image has yet been uploaded for this question No soution has yet been submitted for this question.

3

No image has yet been uploaded for this question No soution has yet been submitted for this question.

4

No image has yet been uploaded for this question
No soution has yet been submitted for this question.

5

No image has yet been uploaded for this question No soution has yet been submitted for this question.

6

$$
\text { Express } \frac{4 x^{2}-x}{(x-1)^{2}(x+2)} \quad \text { as partial fractions. }
$$

Solution(s):

From user: lester

$$
\begin{aligned}
& \text { 2012 Payer 1. IAMNST. 6. } \\
& \frac{4 x^{2}-x}{(x-1)^{2}(x+2)}=\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{x+2} \\
& \text { ' }{ }^{\prime} x \text { by }(x+2)^{\prime \prime} \text { and let } x \rightarrow-2 \text { get. } \frac{4 \cdot 4+2}{(-3)^{2}}=C \Rightarrow C=2 \\
& { }^{\prime \prime} \times(x-1)^{\prime \prime} \Rightarrow \frac{4 x^{2}-x}{(x-1)(x+2)}=A+\frac{B}{x-1}+\frac{C(x-1)}{x+2} \\
& \text { Let } x \rightarrow \infty \text {. aha } L_{4}=A+0+C \Rightarrow A=4-C=4-2=2 \\
& F_{\text {ale }} \text { it }{ }^{\circ} \times(x-1)^{2 \cdots} \Rightarrow \\
& \frac{4 x^{2}-x}{x+2}=A(x-1)+B+\frac{C(x-1)^{2}}{x+2} \\
& \text { and lat } x \rightarrow 1 \text { yin } \frac{4-1}{3}=0+B+0 \Rightarrow B=1 \\
& \text { So: } \mathbb{A}=\frac{2}{x-1}+\frac{1}{(x-1)^{2}}+\frac{2}{x+2}
\end{aligned}
$$

7

No image has yet been uploaded for this question No soution has yet been submitted for this question.

8

No image has yet been uploaded for this question No soution has yet been submitted for this question.

9

No image has yet been uploaded for this question No soution has yet been submitted for this question.

10

No image has yet been uploaded for this question No soution has yet been submitted for this question.

Section B

11X

No image has yet been uploaded for this question No soution has yet been submitted for this question.
$12 Z$
No image has yet been uploaded for this question

Solutions):

From user: ar857
2012 Paper 1 Q $12 z$
$12 z$

a)i) $\left(\frac{2+i}{-1+i}\right)^{2}=\left(\frac{2+i}{-1+i} \cdot \frac{-1+i}{-2 i}\right)^{2}=\left(\frac{-2-i-2 r-i^{2}}{2}\right)^{2}=\frac{1}{4}(-1-3 i)^{2}$
$=\frac{1}{4}(1-9+6 i)=-2+\frac{3}{2} i$
ii) $(1+i)^{10}=\left(\sqrt{2}\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i\right)\right)^{10}=32(0+i)=32 i$
iii) $\sin \left(\frac{\pi}{2}+i \ln 2\right)=\sin \pi / 2 \cos i \ln 2+\cos \pi / 2 \sin i \ln 2$

$$
=\cos (i \ln 2)=
$$

$$
=\cosh (\ln 2)=\frac{2+\frac{1}{2}}{2}=\frac{5}{4}
$$

b) $z^{2}=(i-1)=\sqrt{2}\left(-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\right)=\sqrt{2} \cos \left(\frac{3}{2} \pi+2 \pi\right)+i \sin \left(\frac{3}{2} \pi+2 \pi\right)$
$z=\sqrt[4]{2}\left[\cos \left(\frac{3}{8} \pi+n \pi\right)+\sin \left(\frac{3}{3} \pi+n \pi\right)\right]$
c) $\sin ^{5} \phi=\left(e^{5}=\frac{1}{32}(i)^{5} \cdot\left(e^{x}-e^{-x}\right)^{5}\right.$

$$
\begin{aligned}
& =\frac{1}{16} \cdot \frac{1}{2 i}\left(e^{5 x}-5 e^{4 x} e^{-x}+10 e^{3 x} e^{-2 x}-10 e^{2 x} e^{-3 x}+5 e^{x} e^{-4 x}=e^{-5 x}\right) \\
& =1 / 86(\sin 54-5(\sin 3 \phi)+10 \sin \psi)
\end{aligned}
$$

d) $\cosh z=-1$
$\begin{array}{cll}\frac{A+\frac{1}{A}}{2}=-1 & A+\frac{1}{A}=-2 & e^{Z}=-1 \\ 2012 & A^{2}+2 A+1=0 & Z=\ln (-1)=\ln \left(e^{\left(\pi+2 \pi A_{i} i\right.}\right)\end{array}$

$13 Z$

No image has yet been uploaded for this question

Solutions):

From user: ar857

2012 Paper I Q13
(13) $\frac{d y}{d x}=\frac{y^{2}+\lambda y}{x^{2}}=\frac{y^{2}}{x^{2}}+\frac{y}{x}$

$$
A^{2}+2 A+1=0
$$

$$
\begin{array}{ll}
d x=\overline{\lambda^{2}} & =\bar{x}^{2}+\bar{x} \\
\text { SUBSTITUTION } \\
y=v x
\end{array}
$$

a) $\frac{d v}{d x} x+v=v^{2}+v$
b) $\frac{d(x+y)}{d y}=1=\frac{d(x)}{d x}=1 \quad \Rightarrow$ exact ditterecial

$$
\text { general colceich } \quad \frac{1}{2} x^{2}+y x=c \quad y=\frac{\left(c-\frac{1}{2} x^{2}\right)}{x}
$$

\star
$z=\ln (-1)=\ln \left(e^{\left(\pi+2 \pi x_{i}\right)}\right)$
$z=\pi i(1+2 n)$
$V=\frac{b}{x}$

$$
\text { dave } \frac{d v}{d x}=\frac{d v}{d x} x+V
$$

$$
\begin{aligned}
d v \frac{1}{v^{2}} & =\frac{1}{x} d x \\
-\frac{1}{v} & =\ln x+c \\
-\frac{x}{y} & =\ln x+c \quad y=\frac{-x}{\ln x+c}
\end{aligned}
$$

$$
x \frac{d y}{a}+x+y=0
$$

From user: ar857

14S

No image has yet been uploaded for this question No solution has yet been submitted for this question.

15T

No image has yet been uploaded for this question

Solutions):

From user: ar857

16Y

No image has yet been uploaded for this question

Solutions):

From user: ar857

$$
\begin{aligned}
& \text { (16) } \\
& 2012 \text { Paper } 1 \text { Q16 } 4 \\
& \text { a) } f=\frac{-2}{\left(1+x^{2}+y^{2}\right)^{2}}(x, y) \\
& \text { 奴 }(1,0) \cdot \frac{V}{|v|}=\frac{-2}{(2)^{2}}\left(\frac{4}{1} 1,0\right) \cdot\left(\frac{4}{5}, \frac{3}{5}\right) \\
& =\frac{-2}{4} \cdot \frac{4}{5}=-\frac{2}{5} \\
& \text { b) } \\
& \frac{\partial y}{\partial x}=\left(2 x-x\left(x^{2}-y^{2}\right)\right) \cdot e^{-\frac{x^{2}+y^{2}}{2}} \\
& =x \cdot\left(2-x^{2}+y^{2}\right) e^{-x^{2} \frac{+1}{2}} \\
& =0 \text { for } x=0 \text { or } x^{2}=2+y^{2} \\
& \frac{\partial g}{\partial y}=\left(-2-x^{2}+y^{2}\right) y e^{-x^{2} \frac{+x^{2}}{2}} \\
& =0 \text { for } g=0 \text { or } y^{2}=2+x^{2} \\
& \text { Stacionsy poises ate } \\
& {[0,0]} \\
& {[0, \pm \sqrt{2}]} \\
& {[\pm \sqrt{2}, 0]} \\
& \text { c) } \frac{Q^{2} y}{\partial x^{2}}=\left(2-x^{2}+y^{2}\right) e^{-x^{2}+x^{2}}-2 x^{2} e^{-\left(x+\frac{1}{2}\right)}-2 x^{2}\left(2-x^{2}+y^{2}\right) e^{-x^{4} \frac{y}{2} 5} \\
& g_{\lambda r}(0,0)=2-0-0=2 \\
& g_{y y}=-2 \\
& \text { since gag has outtereresisn then ext } \Rightarrow \text { Sardeepaite }
\end{aligned}
$$

17R
No image has yet been uploaded for this question No soution has yet been submitted for this question.

18R

No image has yet been uploaded for this question

Solutions):

From user: ar857

```
(18) 2012 Pour I Q \(18 R\)
    Ben goes \(3 / 4\)
    Ben stays \(1 / 4\)
(a) 28\() \quad(3 / 4)^{24}\)
    (4) \(\quad\left(\frac{1}{4}\right)^{24}\)
    (in) \(3 / 4 \cdot 24=18\)
id) \(\sigma^{2}=3 / 4 \cdot 1 / 4 \cdot 24=\sigma_{4} \frac{9}{2}\)
            \(v=\frac{3}{\sqrt{2}}\)
b) i) \(\int_{\alpha}^{B} f(x) d x\)
ii) \(\mu=\langle x\rangle=\int_{\alpha}^{B} x f(x) d x\)
        \(\sigma^{2}=\int_{\alpha}^{s}(x-\mu)^{2} f(x) d x=\int_{\alpha}^{s} x^{2} f(x) d(x)-(\mu)^{2}\)
```

From user: ar857

$$
\begin{aligned}
& 2+548+11+19 \\
& 2+\frac{5 \cdot(2+14)}{2} \\
& \text { i) } \int_{0}^{\infty} A x e^{-\lambda x}=A \frac{1}{\lambda} \int_{0}^{\infty} e^{-\lambda x}=A \frac{1}{\lambda^{2}}=1 \Rightarrow A=\lambda^{2} \\
& \text { i(2) } \sigma^{2}=\int_{0}^{\infty} A x^{3} e^{-\lambda x}=\int_{0}^{\infty}\left(\frac{1}{\lambda} A e^{-\lambda x} \cdot 3 \lambda^{2}\right) d t-\frac{4}{\lambda^{2}} \\
& =\frac{6}{\lambda^{2}}-\frac{4}{\lambda^{2}}=\frac{2}{\lambda^{2}}=\sigma^{2} \\
& \text { iii) } \\
& \frac{2}{\lambda}+\frac{2 \sqrt{2}}{\lambda}=\frac{2+2 \sqrt{2}}{\lambda} \\
& P(x>\mu+2 \sigma)=\int_{\frac{2+2 \sqrt{2}}{\lambda}}^{\infty} \lambda^{2} \lambda e^{-\lambda x} \\
& =\lambda^{2}\left[-\frac{1}{\lambda} x e^{-\lambda x}\right]_{\frac{2+8 v}{\lambda}}^{\infty}+\frac{\lambda^{2}}{\lambda} \int_{2+\frac{2 r}{\lambda}}^{\infty} e^{-\lambda x} d x \\
& =\frac{\lambda^{2}}{x} \frac{2+2 \sqrt{2}}{x} e^{-2+2 \sqrt{2}}+\frac{\lambda^{2}}{\lambda^{2}} e^{-2-2 \sqrt{2}} \\
& =(3+2 \sqrt{2}) e^{-2(1+\sqrt{2})}
\end{aligned}
$$

19W*

No image has yet been uploaded for this question No soution has yet been submitted for this question.

20Y*

No image has yet been uploaded for this question
No soution has yet been submitted for this question.

