2011 Mathematics (2)

This pdf was generated from questions and answers contributed by members of the public to Christopher Lester's tripos/example-sheet solution exchange site http://cgl20.user.srcf.net/. Nothing (other than raven authentication) prevents rubbish being uploaded, so this pdf comes with no warranty as to the correctness of the questions or answers contained. Visit the site, vote, and/or supply your own content if you don't like what you see here.
This pdf had url http://cgl20.user.srcf.net/camcourse/paperpdf/15? withSolutions=1. This pdf was creted on Fri, 19 Apr 2024 00:28:43 +0000.

Section A

1

No image has yet been uploaded for this question
No soution has yet been submitted for this question.

2

No image has yet been uploaded for this question No soution has yet been submitted for this question.

3

No image has yet been uploaded for this question No soution has yet been submitted for this question.

4

No image has yet been uploaded for this question
No soution has yet been submitted for this question.

5

No image has yet been uploaded for this question No soution has yet been submitted for this question.

6

No image has yet been uploaded for this question No soution has yet been submitted for this question.

7

No image has yet been uploaded for this question No soution has yet been submitted for this question.

8

No image has yet been uploaded for this question
No soution has yet been submitted for this question.

9

No image has yet been uploaded for this question
No soution has yet been submitted for this question.

10

No image has yet been uploaded for this question No soution has yet been submitted for this question.

Section B

11R

No image has yet been uploaded for this question

Solutions):

From user: ar857

12S

No image has yet been uploaded for this question

Solution(s):

From user: ar857

	(12) 2011 Paper 2 Q12
	a) $x=r \cos \varphi \sin \theta$
	$y=r \sin \phi$ oin θ
	$t=r \cos \theta$
	b) $08=2 \sqrt{8,000}$
	ds $s^{2}=(d x)^{2}+(-1 y)^{2}+(y z)^{2}$
	$=\gamma^{2} \cdot\left[(\cos \sigma \cos \psi d \sigma-\sin \sigma \sin \phi d \sigma)^{2}+(\cos \phi \sin \sigma d \phi+\cos \sigma \sin \phi d \sigma)^{2}\right.$
	$\left.+(0 * \sin \sigma d \sigma)^{2}\right]$
	$=r^{2} \cdot\left(\cos ^{2} \cos ^{2} \varphi(d \sigma)^{2}-2 \cos \sigma\right.$ eosd $\sin \theta \sin \phi d \phi d \sigma+\sin ^{2} \sin \phi(d \phi)^{2}$
	$\left.+\cos ^{2} \psi(\sin \theta)^{2}(1 \phi)^{2}+(\cos \theta)^{2}(\theta) \theta\right)^{2}(1 \theta)^{2}+2 \cos \theta \cos \sigma \sin \phi \sin \sigma d \sigma d \phi$
	$\left.+\Delta r \theta^{2}(d \theta)^{2}\right)$
e	$=\gamma^{2} \cdot\left(\cos ^{2} d \sigma^{2}+\sin \sigma^{2} d \sigma^{2}+\sin \sigma^{2}(d \phi)^{2}\right)$
	$=r^{2} \cdot\left((d \theta)^{2}+\sin \theta^{2}(d \phi)^{2}\right)$
	$\delta s^{2}=\gamma^{2}\left(\theta^{2}+\sin \theta^{2} \delta \phi^{2}\right)$ for suticiciely shal Jood $\delta \theta$
	c) plave: $A x+B y+C z=0$
	sphere $\quad x^{2}+y^{2}+z^{2}=R^{2} \quad \Leftrightarrow r^{2}=R^{2}$
	ploce $\underbrace{A R} \cos \phi \sin \sigma+\underbrace{B R} \sin \phi \operatorname{sic}^{\circ}+\underbrace{C R} \cos \sigma=0$
	d)
	A: $\quad l \cos 0 \sin \frac{\pi}{2}+n \sin 0 \sin \pi / 2+n \cos \pi / 2=0$
	ke $l=0$
	B: $\quad m \sin \phi_{0} \sin \theta_{0}+m \cos \theta_{0}=0$
	$-n=\frac{m \sin \phi_{0} \sin \theta_{0}}{\cos \theta_{0}}$
	$-\frac{n}{m}=\tan \theta_{0} \sin \phi_{0}$
	equivalenty tron origind equmior $-\frac{n}{m}=\tan \theta \sin \phi$
	$-\frac{n}{m}=\tan \theta_{0} \sin \psi_{0}=\tan \theta \sin \phi$
(

$13 Z$

No image has yet been uploaded for this question

Solution(s):

From user: ar857

14Y

No image has yet been uploaded for this question
No soution has yet been submitted for this question.

15T

No image has yet been uploaded for this question

Solution(s):

From user: ar857

user. ar85	
	(15) 2011 poper 2015
) $a^{2} \lambda+y \frac{d x}{a t^{2}} \quad \lambda^{2}+\gamma \lambda=0$
	at ${ }^{2}+\gamma=0 \quad \lambda \cdot(\lambda+\gamma)=0 \quad \lambda_{1}=0 \quad \lambda_{2}=-\gamma$
	$x=C_{1}+C_{2} e^{-\gamma}$
	$\frac{d^{2} z}{d t^{2}}+\gamma \frac{d z}{d t}+g=0 \quad \frac{d^{2} z}{d e^{2}}+\gamma\left(\frac{d z}{a t}+\frac{g}{\gamma}\right)=0$
	$z=C_{3}+C_{4} e^{-\gamma t}-\frac{\gamma}{\gamma} t$
	$V_{0 x}=-\gamma C_{2} \quad \left\lvert\, V_{0 z}=-\gamma c_{4}-\frac{a}{\gamma}\right.$
	$C_{2}=-\frac{V_{0 x}}{\gamma} \quad C_{1}=\frac{V_{\text {Oz }}+\frac{\gamma}{\gamma}}{\gamma}$
	$c_{1}=-c_{2}=\frac{v_{6 x}}{\gamma} \quad c_{3}=\frac{v_{0 t}+\frac{\delta}{\gamma}}{\gamma}$
5	
	$X(t)=\frac{10 x}{\gamma}\left(1-e^{-\gamma t}\right)$
	$z(t)=\frac{V_{0 z}}{\gamma}\left(1-e^{-\gamma t}\right)+\frac{g}{\gamma^{2}}\left(1-e^{-\gamma t}\right)-\frac{g}{\gamma} t$
b)	
	$z=z(x)$
	$\text { 㽞 } A \text { A }$
	$=\frac{g}{z}+2 \frac{x}{v_{0 x}} \cdot\left(V_{0 z}+\frac{g}{\gamma}\right)-\frac{g}{8} t$
	$\left.t=-0^{-x}+\frac{v_{0}}{\gamma}\right)^{-1}$
	p($\frac{\text { vor }}{x} \cdot \frac{\gamma}{}$

16T

No image has yet been uploaded for this question

Solution(s):

From user: ar857

$$
\begin{aligned}
& \begin{array}{l}
\text { (16) } \int_{-\frac{1}{2}}^{1 / 2} \sqrt{\frac{9-4 \cdot \lambda^{2}}{36\left(\cdot 1-x^{2}\right)}} d x \quad \begin{array}{l}
x=\sin \sigma \\
\text { a) }
\end{array} d x=\cos \sigma
\end{array} \\
& =\int_{-\pi / 6}^{\pi / 6} \sqrt{\frac{9-4 \sin \sigma^{2}}{36 \cos \sigma^{2}}} \cos \sigma d \sigma=\int_{-\pi / 6}^{\pi / 6} \sqrt{\frac{9-4 \sin \sigma^{2}}{9 \cdot 4}} d \sigma \\
& =2 \cdot \int_{0}^{\pi / 6} \frac{1}{2} \sqrt{1-\frac{4}{9} \sin ^{2}} d \sigma=\int_{0}^{\pi / 6} \sqrt{1-\left(\frac{2}{3}\right) 2 \pi \sigma^{2}} d o=E\left(\frac{2}{3}, \frac{\pi}{6}\right)
\end{aligned}
$$

17X

No image has yet been uploaded for this question

Solution(s):

From user: ar857

18Y

No image has yet been uploaded for this question

Solution(s):

From user: ar857

19X*

No image has yet been uploaded for this question No soution has yet been submitted for this question.

20R*

Consider the functions $L_{n}(x)$ defined by

$$
L_{n}(x)=\frac{e^{x}}{n!} \frac{d^{n}}{d x^{n}}\left(x^{n} e^{-x}\right)
$$

for non-negative integers n.
(a) Show that L_{n} is a polynomial of degree n and find the coefficients of x^{10} and x^{9} of $L_{10}(x)$ in terms of factorials.
(b) Let $v=x^{n} e^{-x}$. Verify that

$$
x \frac{d v}{d x}=(n-x) v,
$$

and differentiate this identity $n+1$ times to show that L_{n} satisfies the differential equation

$$
\begin{equation*}
x \frac{d^{2} L_{n}}{d x^{2}}+(1-x) \frac{d L_{n}}{d x}+n L_{n}=0 . \tag{8}
\end{equation*}
$$

(c) The previous equation can be rewritten as

$$
e^{x} \frac{d}{d x}\left(x e^{-x} \frac{d L_{n}}{d x}\right)+n L_{n}=0
$$

Hence, for any non-negative integers n, m,

$$
\begin{aligned}
& L_{m} e^{x} \frac{d}{d x}\left(x e^{-x} \frac{d L_{n}}{d x}\right)+n L_{m} L_{n}=0, \\
& L_{n} e^{x} \frac{d}{d x}\left(x e^{-x} \frac{d L_{m}}{d x}\right)+m L_{m} L_{n}=0 .
\end{aligned}
$$

Use these results to derive the orthogonality relation

$$
\int_{0}^{\infty} e^{-x} L_{m}(x) L_{n}(x) d x=0
$$

for $m \neq n$.

Solution(s):

From user: cgl20

$$
L_{n}(x)=\frac{e^{x}}{n!} \frac{d^{n}}{d x^{n}}\left(x^{n} e^{-x}\right)
$$

(a) By Leibuiz
(b) $v=x^{n} e^{-x} . \quad \therefore \quad x \frac{d v}{d x}=x\left(n x^{n-1} e^{-x}-x^{n} e^{-x}\right)=(n-x) x^{n} e^{-x}=(n-x) v$. QED

$$
\begin{aligned}
& \text { Howevr, } \begin{aligned}
L_{n}(x)=\frac{e^{x}}{n!} \frac{d^{n}}{d x^{n}}(v) \Rightarrow & \frac{d L_{n}}{d x}=\frac{e^{x}}{n!} \frac{d^{n+1} v}{d v^{n}} v+\frac{e^{x}}{n!} \frac{d^{n} v}{d x} v \\
& \& \frac{d^{2} n_{n}}{d x^{2}}=(n+1) \frac{d L_{n+1}}{d x}+\frac{d l_{n}}{d x} \\
\therefore(1-x) \frac{d L_{n}}{d x}+n L_{n} & =(1-x)\left((n+1) L_{n+1}+L_{n}\right)+n
\end{aligned} \\
& \therefore x \frac{d^{2} L_{n}}{d x^{2}}+(1-x) \frac{d l_{n}}{d c}+n L_{n}=0 . \quad \text { QED }
\end{aligned}
$$

$$
L_{n}(x)=\frac{e^{x}}{n!} \frac{d^{n}}{d x}(v) \Rightarrow \frac{d L_{n}}{d x}=\frac{e^{x}}{n!} \frac{d^{n+1}}{d n^{n}} v+\frac{e^{x}}{n!\frac{d^{n}}{d x} v=(n+1) L_{n+1}+L_{n}, x_{n}}
$$

$$
\& \quad \frac{d x}{d L_{n}}=(n+1) \frac{d L_{n+1}}{d x}+\frac{n L_{n}}{d x}=(n+1)\left((n+2) L_{n+2}+L_{n+1}\right)+(n+1) L_{n+1}+L_{n}=(n+1)(n+2) L_{n+2}+2(n+1) L_{n+1}+L_{n} \text { (Glo) }
$$

$$
\therefore(1-x) \frac{d L_{n}}{d c}+n L_{n}=(1-x)\left((n+1) L_{n+1}+L_{n}\right)+n L_{n}=(1-x)(n+1) L_{n+1}+(n+1-x) L_{n}
$$

$$
=(1-x)(n+1) L_{n+1}+(n+1)\left[-(n+2) x L_{n+2}-(1+x) L_{n+1}\right]-x L_{n}
$$

$$
=-x(n+2)(n+1) L_{n+2}-2(n+1) x L_{n+1}-x L_{n}
$$

$$
=-x \frac{d^{2} L_{n}}{d x^{2}} \quad(b y(x))
$$

(c) Define $I_{m n}=\int_{0}^{\infty} e^{-x} L_{m}(x) L_{n}(x) d x$.

Clenty $I_{m n}=I_{n m}$. We are asted to show that $I_{m n}=0$ wher $m \neq n$.
Sinco $I_{m n}$ is symestric $m \leftrightarrow n$ and we are only interested in $m \neq n$ we may assme, wilhot loss of gereariliy, that $n \neq 0$. Assuming, therefore, that $m \neq n \& n \neq 0$ we may say:

$$
\begin{array}{rlr}
I_{m n} & =-\frac{1}{n} \int_{0}^{\infty} L_{m} \frac{d}{d x}\left(x e^{-x} \frac{d L_{m}}{d x}\right) d x & \text { (by (A)) } \\
& =-\frac{1}{n}\left\{\left[L_{m} x e^{-x} \frac{d L_{n}}{d x}\right]_{0}^{\infty}-\int_{0}^{\infty} \frac{d}{d x}\left(x e^{-x} \frac{d L_{n}}{d x}\right)+n L_{m} L_{n}=0,\right. \\
& \left.=\frac{1}{d x} e^{-x} \frac{d L_{n}}{d x} d x\right\} & \left(\text { by pants) } \frac{d L_{n}}{d x} x e^{-x} \frac{d L_{m}}{d x} \frac{d}{d x}\left(x e^{-x} \frac{d L_{m}}{d x}\right)+m L_{m} L_{n}=0 .\right. \\
& =\frac{1}{n}\left\{\left[L_{n} x e_{0}^{-x} \frac{d L_{m}}{d x}\right]_{0}^{\infty}-\int_{0}^{\infty} L_{n} \frac{d}{d x}\left(x e^{-x} \frac{d L_{m}}{d x}\right) d x\right\} & \text { (by pants) } \\
& =-\frac{1}{n} \int_{0}^{\infty}-m e^{-x} L_{m} L_{n} d x & \text { (by (B)) } \tag{B}\\
& =\frac{m}{n} I_{m n} \Rightarrow I_{m n}\left(1-\frac{m}{n}\right)=0 \Rightarrow I_{m n}=0 \text { since } m \neq n .
\end{array}
$$

$$
\begin{align*}
& \text { We sea that } L_{n}(x)=\frac{e^{x}}{n!} \frac{d^{n}}{d x^{n}}(v) . \quad x \frac{d v}{d x}=(n-x) v \Rightarrow \frac{d^{n+1}}{d x^{n+1}}\left(x \frac{d v}{d x}\right)=\frac{d^{n+1}}{d x^{n+1}}(n-x) v \\
& \left.\Rightarrow\left(\frac{d^{n+1}}{d x^{n \prime \prime}}\left(\frac{d v}{d x}\right)\right)\right) x+\binom{(n+1}{1} \frac{d^{n}}{d x^{n}}\left(\frac{d}{d x}\right) \cdot 1=\binom{d^{n+1}}{d x^{n+1}}(n-x)+\binom{n+1}{1} \frac{d^{n} v}{d x^{n}} \cdot(-1) \\
& \Rightarrow \frac{(n+2)!}{a_{j}^{x}} L_{n-2} x+\left(n^{n}+1\right) \frac{(n+1)!}{\lambda_{j}^{2}} L_{n+1}=(n-x) \frac{(n+1)!}{\sum_{j 1}^{x}} L_{n+1}-(n+1) \frac{n!}{e_{j}^{x}} L_{n} \\
& \Rightarrow(n+2) \times L_{n+2}+(1+x) L_{n+1}+L_{n}=0 \text {. }
\end{align*}
$$

$$
\begin{aligned}
& L_{n}(x)=\frac{e^{x}}{n!} \sum_{a=0}^{n} \frac{d^{(-1)}}{d x^{(n-1)}}\left(x^{n}\right) \frac{d^{a}}{d x^{a}}\left(e^{-x}\right)\binom{n}{a}=\frac{e^{x}}{n!} \sum_{a=0}^{n} \frac{n!}{a!} x^{a} a^{-a^{2}}(-1)^{a} \quad\binom{n}{a} \\
& =\sum_{n=0}^{n}(-x)^{a} \frac{n!}{a!a!(n-x)!} \text { whech is a plyynomed in } x \text { of dogee } n \text {. } \\
& \therefore \quad L_{10}(x)=(-x)^{10} \frac{10!}{10!10!0!}+(-x)^{9} \frac{10!}{9!9!1!}+\cdots=\frac{1}{10!} x^{10}-\frac{10!}{(9!)^{2}} x^{9}+\ldots
\end{aligned}
$$

