2011 Mathematics (2)

This pdf was generated from questions and answers contributed by members of the public to <u>Christopher Lester</u>'s tripos/example-sheet solution exchange site <u>http://cgl20.user.srcf.net/</u>. Nothing (other than raven authentication) prevents rubbish being uploaded, so this pdf comes with no warranty as to the correctness of the questions or answers contained. Visit the site, vote, and/or supply your own content if you don't like what you see here.

This pdf had url <u>http://cgl20.user.srcf.net/camcourse/paperpdf/15?withSolutions=1</u>. This pdf was creted on Fri, 19 Apr 2024 00:28:43 +0000.

Section A

1

No image has yet been uploaded for this question No soution has yet been submitted for this question.

2

No image has yet been uploaded for this question No soution has yet been submitted for this question.

3

No image has yet been uploaded for this question No soution has yet been submitted for this question.

4

No image has yet been uploaded for this question No soution has yet been submitted for this question.

5

No image has yet been uploaded for this question No soution has yet been submitted for this question.

6

No image has yet been uploaded for this question No soution has yet been submitted for this question.

7

No image has yet been uploaded for this question No soution has yet been submitted for this question.

8

No image has yet been uploaded for this question No soution has yet been submitted for this question.

9

No image has yet been uploaded for this question No soution has yet been submitted for this question.

10

No image has yet been uploaded for this question No soution has yet been submitted for this question.

Section B

11R

No image has yet been uploaded for this question

Solution(s):

From user: ar857

From user: ar857
(1) 2011 Paper 2011
a) i) \$ -1 (3v +w) d= \$ -1 (3v) - dx + \$ -1 W - dx
A small # gra (3v) dx = 0 because V is a conservative tield since split b f f f f f f f f f f f f f f f f f f
it is a grachiene of \$
$\oint F_1 (3v+w) \cdot dx = \int_0^{2\pi} (0_1 0, \cos \varphi) \cdot (-\sin \psi, \frac{d}{d\phi} (e^{-\cos^2 \theta}), \cos \phi) d\phi$
$= \int_{0}^{2\pi i} \cos^{2} \theta d\theta = \frac{7}{2} \cdot 2\pi d\theta = \pi$
$\begin{cases} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
(i) $\int_{\tau_2} (\nabla A v) \cdot dx = 0$ since curl of conservative field = 0
$\int_{T_2} \nabla \left[\nabla \Lambda \left(V ^2 w \right) \right] ds = 0$
$\nabla \circ (\nabla \wedge f(\mathbf{x})) = 0$
$\nabla \cdot (\nabla \wedge f(\mathbf{x})) = 0$ be cuse $\nabla \cdot (\nabla \wedge f(x_1y_1z)) = \frac{\partial}{\partial x} (\mathcal{G}(y_1z)) + \frac{\partial}{\partial y} (\mathcal{G}(x_1y_1)) + \frac{\partial}{\partial z} (\mathcal{G}_{\mathbf{x}}(x_1y_1)) +$
b) i) $\int_{S} (\nabla \cdot \mathbf{v}) d\mathbf{S} = \int_{S} (\nabla \cdot \mathbf{v}) \mathbf{n} dS$
5
$\nabla \bullet \vee = \nabla \cdot \left(\nabla \varphi \right) = \nabla \cdot \left(\nabla \left(e^{\chi^2 + \gamma^2 + \lambda^2} \right) \right) = \nabla \cdot \left(\lambda e^{\chi^2 + \gamma^2 + \lambda^2} \left(\chi_{1, j} \right) \right)$
= \$\$ 6ex2+y2++2 + 4ex2+y3+22 (x2+y2+22)
$dS = a^2 Bin \sigma d\sigma d\phi$ $a=1$
$X = \cos \phi \sin \phi y = \sin \phi \sin \phi z = \cos \phi$ $M = \left(\cos \phi \sin \phi, \sin \phi \sin \phi, \cos \phi \right)$ $M = \left(\cos \phi \sin \phi, \sin \phi \sin \phi, \cos \phi \right)$ $M = \left(\cos \phi \sin \phi, \sin \phi \sin \phi, \cos \phi \right)$ $M = \left(\cos \phi \sin \phi, \sin \phi, \sin \phi \sin \phi \right)$
NO y m= (custo sino, sing sino, caso) ()
Stor and the leader of a contraction - 30 contract 2 - 1
$\int \int $
- Jo Jo IVE (COSPORTO, DI TRAINO, COSOSITO) Clode
- All a partition to a to
$f = 4 2\pi \int_{0} \log(0, 0, \frac{3}{2} \operatorname{sin}(2\sigma)) d\sigma = 10 \pi e \cdot \frac{3}{2} (\cos \pi \frac{1}{2} + \cos \sigma) k$
11) $\int_{S} (\nabla \cdot \mathbf{v}) dS = $]= 10 THE k = (0,0,10 THE).
$\int_{\pi_2}^{\pi} 10 e \Pi(0, 0, \sin 2\sigma) = 10 e \pi \cdot (0 - 1) k = (0, 0, -10 e \pi)$

12S

No image has yet been uploaded for this question

Solution(s):

From user: ar857

1	
	12) 2011 Paper 2 Q12
	a) X= r cost one
0.	y=v sind or o
	Z= Y CODO
	b) standard
	$dS = (dX)^2 + (dy)^2 + (dx)^2$
	$= \gamma^2 \cdot \left[\left(\cos \sigma \cos \phi d\sigma + \sin \sigma \sin \phi d\sigma \right)^2 + \left(\cos \phi \sin \sigma d\phi + \cos \sigma \sin \phi d\sigma \right)^2 \right]$
	$+ (0 + \sin\sigma d\sigma)^2]$
	= \vec{Y} . ($\cos \vec{\varphi} \cos^2 \vec{\varphi} \left(d\sigma \right)^2 - 2 \cos \sigma \epsilon ord sho sin \phi d\phi d\sigma + sho sin \phi \left(d\phi \right)^2$
	+ $\cos \varphi \left(\varphi \right)^2 \left(\varphi \right)^2 + \left(\cos \varphi^2 \left(\varphi \right)^2 \left(\varphi \right)^2 + 2 \cos \varphi \left(\cos \varphi \right) \cos \varphi \right) d\sigma d\varphi$ + $\Delta \rho \sigma^2 \left(\varphi q \right)^2 \right)$
~	$= \tilde{Y} \cdot \left(\cos^2 d\sigma^2 + \sin^2 \sigma^2 d\sigma^2 + \sin^2 (d\rho)^2 \right)$
	$= \gamma^2 \cdot \left(\left(\partial \left(\frac{\partial}{\partial t} + \sin \theta^2 \left(\partial \theta \right)^2 \right) \right)$
	5 s ² = Y ² (SO ² + sino ² Sp ²) for suthiciency and oportso
	c) plane: Ax + By + CZ = 0
	Sphere $\chi^2 + q^2 + t^2 = R^2$ (=> $\chi^2 = R^2$
	place AR condising + BR sindsig + CR cord=0
	~
	d) A: $l \cos 0 \sin \frac{\pi}{2} + n \sin 0 \sin \frac{\pi}{2} + \ln \cos \frac{\pi}{2} = 0$
	A: $l \cos 0 \sin \frac{\pi}{2} + n \sin 0 \sin \frac{\pi}{2} + n \cos \frac{\pi}{2} = 0$ <i>liest</i> $l = 0$
~	B: Msin Positoo + 1/2 cosoo =0
0	
	$-h = \frac{m \sin \theta_0 \sin \theta_0}{\cos \theta_0}$
	$-\frac{m}{m} = \tan \Theta_0 \sin \theta_0$
	equivalences thom on give equacion - = tand sinp
. 14	$-\frac{1}{2} = tan \Theta_0 \sin \varphi_0 = tan \Theta \sin \varphi$

13Z

No image has yet been uploaded for this question

Solution(s):

From user: ar857

32 AST $\frac{e^{x}}{e^{2x}+1} \leq \frac{e^{x}}{e^{2x}-1} \left| \cdot \left(e^{2x}-1 \right) \left(e^{2x}+1 \right) \frac{1}{e^{x}} \right|^{\frac{1}{2}} \text{ and } e^{2x}-1 > 0$ e2x-1 2 e2x+1 -161 therefore for x < An x tor X>0 therefor 1 coshx < 1 < cochx for x >0 b) $\nabla f(x_{1}y) = \nabla (e^{x \cdot b}) = (y e^{x \cdot b}, x e^{x \cdot y})$ $\nabla f(z_{1}o) = (o_{1} - 2)$ S π/3 $\nabla t(-z,0) \circ \overline{\mathbf{v}} = (0,-z) \circ (-\frac{z}{2}, \sqrt{z}) = -\sqrt{3}$ (12) () $f(x_1y) = e^{xy}$ $a_{y} = xe^{xy} = 0$ for x=0 $a_{x} = ye^{xy} = 0$ for y=0 St. point at (90) $a_{x}^{2} = y^{2}e^{xy}$ $a_{y}^{2} = x^{2}e^{xy}$ $a_{y}^{2} = yxe^{xy}$ tanks $tan underlined an T_{2} = 90^{\circ}$ Saddle and (0,0) 19)

14Y

No image has yet been uploaded for this question No soution has yet been submitted for this question.

15T

No image has yet been uploaded for this question

Solution(s):

From user: ar857 (15) 2011 Paper 2615 a) $\frac{d^2x}{dt^2} + 3 \frac{dx}{dt} = 0$ $\frac{\lambda^2 + 3\lambda = 0}{\lambda \cdot (\lambda + 3) = 0}$ $\frac{\lambda = 0}{\lambda = 0} \frac{\lambda = 0}{\lambda = 0}$ $\frac{\lambda = 0}{\lambda = 0} \frac{\lambda = -3}{\lambda = 0}$ $\frac{d^2x}{dt^2} + 3 \frac{dx}{dt} = 43 = 0$ $\frac{d^2x}{dt^2} + 3 \left(\frac{dx}{dt} + \frac{3}{3}\right) = 0$ $z = C_3 + C_4 e^{-\delta t} - \sqrt[3]{3} t$ $V_{02} = -\gamma C_4 - \sqrt[3]{3} t$ $C_2 = -\frac{V_{02}}{8} C_4 = \frac{V_{02} + \frac{\delta}{8}}{C_4}$ $C_3 = \frac{V_{02} + \frac{\delta}{8}}{K}$ 5 $\begin{array}{l} \chi(t) = \frac{1}{\delta} o_{t} \left(1 - e^{-\delta t} \right) \\ z(t) = \frac{1}{\delta} \left(1 - e^{-\delta t} \right) + \frac{3}{\delta^{2}} \left(1 - e^{-\delta t} \right) + - \frac{3}{\delta} t \end{array}$ 6) 2=2(x) $\frac{\mathcal{A}}{\mathcal{A}} = \frac{\mathcal{A}}{\mathcal{A}} \left(\begin{array}{c} \mathcal{A} \\ \mathcal{A}$

16**T**

No image has yet been uploaded for this question

Solution(s):

From user: ar857 $\frac{2011}{16} \int \frac{1}{12} \frac{1}{36(1-x^2)} dx \qquad \frac{1}{2} = 2 \sin 5$ $=\int_{-\pi_{c}}^{\pi_{c}} \sqrt{\frac{q-4sno^{2}}{36cosb^{2}}} \cos d\sigma = \int_{-\pi_{c}}^{\pi_{c}} \sqrt{\frac{q-4sno^{2}}{q\cdot 4}} d\sigma$ $= 2 \cdot \int_{0}^{\pi} \frac{1}{2} \sqrt{1 - \frac{4}{9} \sin^{2} d\sigma} = \int_{0}^{\pi} \sqrt{1 - \frac{6}{3} \sin^{2} d\sigma} = E(\frac{2}{3}, \frac{\pi}{6})$

From user: ar857

$$b = \int dx^{2} + dy^{2} \qquad x = 0 \text{ sing}$$

$$dx = da(0x0) d\sigma$$

$$dy = -b \text{ sing} d\sigma$$

$$dy = -b \text{ sing} d\sigma$$

$$f = \frac{1 - b^{2}}{a^{2}} = 1 - \frac{b^{2}}{a^{2}}$$

$$L = \int a^{2} + a^{2} \sin^{2} + b^{2} \sin^{2} d\sigma$$

$$= \int a \sqrt{1 - \sin^{2} + b^{2} \sin^{2} d\sigma}$$

$$= \int a \sqrt{1 - \sin^{2} + b^{2} \sin^{2} d\sigma} = a \int a^{2} \sqrt{1 - e^{2} \sin^{2} d\sigma} = \frac{1 - b^{2}}{a^{2}}$$

$$= \int a \int a^{2} \sqrt{1 - e^{2} \sin^{2} d\sigma} = a \int a^{2} \sqrt{1 - e^{2} \sin^{2} d\sigma} = \frac{1 - b^{2}}{a^{2}}$$

$$= \int a \int a^{2} \sqrt{1 - e^{2} \sin^{2} d\sigma} = a \int a^{2} \sqrt{1 - e^{2} \sin^{2} d\sigma} = \frac{1 - b^{2}}{a^{2}}$$

$$= 4a \int a^{2} \sqrt{1 - e^{2} \sin^{2} d\sigma} = a \int a^{2} \sqrt{1 - e^{2} \sin^{2} d\sigma} = \frac{1 - b^{2}}{a^{2}}$$

$$= 4a \int a^{2} \sqrt{1 - e^{2} \sin^{2} d\sigma} = 4a E(e, T_{E})$$

$$= a \int a^{2} \sqrt{1 - 2e^{2} \sin^{2} \sigma} = \frac{1 - 4e^{2} + 4e^{2} \cos^{2} \sigma}{a^{2}} = \frac{1 - 4e^{2} + 4e^{2} \cos^{$$

17X

No image has yet been uploaded for this question

Solution(s):

From user: ar857

17) a) 8 Squeles) 4 chers Smaller board nuceer 4! 2! Decress 64 board bisge Squeres The (32!) (327! 32! (32) 16:16 64 66:1264 VSS work 5-6-610 18 Q1 Stay. D'3m. lay P(Ha ing Qn Bn= Inla 6) Ratha $\frac{3}{7}h - \frac{7}{3}l_1 = ha$ $h_1 = h_2$ -341 h7= 76 RA 224= Qn= 91 Q1/2 2= 1, 3 = 43 = 3 = 75% P= =80% 1+

18Y

No image has yet been uploaded for this question

Solution(s):

From user: ar857

 $\int_{0}^{\pi_{r_{2}}} \int_{0}^{R} y^{2} \cos \phi \sin \phi \, dr \, d\phi = -\frac{1}{22} \left(-1 - 1 \right).$ (18) a) 6x-x2 = - xo(x-6) 64 7=4 0) +3 = 4 0000

19X*

No image has yet been uploaded for this question No soution has yet been submitted for this question.

20R*

Consider the functions $L_n(x)$ defined by

$$L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} \left(x^n e^{-x} \right),$$

for non-negative integers n.

(a) Show that L_n is a polynomial of degree n and find the coefficients of x^{10} and x^9 of $L_{10}(x)$ in terms of factorials. [6]

(b) Let $v = x^n e^{-x}$. Verify that

$$x\frac{dv}{dx} = (n-x)v,$$

and differentiate this identity n+1 times to show that L_n satisfies the differential equation

$$x\frac{d^{2}L_{n}}{dx^{2}} + (1-x)\frac{dL_{n}}{dx} + nL_{n} = 0.$$

[6]

(c) The previous equation can be rewritten as

$$e^x \frac{d}{dx} \left(x e^{-x} \frac{dL_n}{dx} \right) + nL_n = 0.$$

Hence, for any non-negative integers n, m,

$$L_m e^x \frac{d}{dx} \left(x e^{-x} \frac{dL_n}{dx} \right) + nL_m L_n = 0,$$
$$L_n e^x \frac{d}{dx} \left(x e^{-x} \frac{dL_m}{dx} \right) + mL_m L_n = 0.$$

Use these results to derive the orthogonality relation

$$\int_0^\infty e^{-x} L_m(x) L_n(x) dx = 0$$

for $m \neq n$.

Solution(s):

From user: cgl20

$$\begin{split} L_{n}(b) &= \sum_{n=1}^{\infty} \frac{h^{n}}{h} \left(x + b \right) \quad (a) \quad \mathfrak{P}_{0,n} \left[h \operatorname{div} L_{n}(b) + \sum_{n=1}^{\infty} \sum_{n=0}^{\infty} \frac{h^{n}}{h} \operatorname{div} \left(x + b \right) \left(x + b \right) \right] \\ &= \sum_{n=0}^{\infty} \left(x + b \right) \quad (a) \quad \mathfrak{P}_{0,n} \left[h \operatorname{div} x + b \right] \\ &= \sum_{n=0}^{\infty} \left(x + b \right) \quad (b) \quad \mathbf{d} \times \mathbf{d}$$