2008 Mathematics (2)

This pdf was generated from questions and answers contributed by members of the public to Christopher Lester's tripos/example-sheet solution exchange site http://cgl20.user.srcf.net/. Nothing (other than raven authentication) prevents rubbish being uploaded, so this pdf comes with no warranty as to the correctness of the questions or answers contained. Visit the site, vote, and/or supply your own content if you don't like what you see here.
This pdf had url http://cgl20.user.srcf.net/camcourse/paperpdf/21?withSolutions=1. This pdf was creted on Fri, 26 Apr 2024 22:48:36 +0000.

Section A

1

No image has yet been uploaded for this question
No soution has yet been submitted for this question.

2

No image has yet been uploaded for this question No soution has yet been submitted for this question.

3

No image has yet been uploaded for this question No soution has yet been submitted for this question.

4

No image has yet been uploaded for this question
No soution has yet been submitted for this question.

5

No image has yet been uploaded for this question No soution has yet been submitted for this question.

6

No image has yet been uploaded for this question No soution has yet been submitted for this question.

7

No image has yet been uploaded for this question No soution has yet been submitted for this question.

8

No image has yet been uploaded for this question
No soution has yet been submitted for this question.

9

No image has yet been uploaded for this question
No soution has yet been submitted for this question.

Section B

10Y

No image has yet been uploaded for this question No soution has yet been submitted for this question.

11X

No image has yet been uploaded for this question
No soution has yet been submitted for this question.

12Y

No image has yet been uploaded for this question
No soution has yet been submitted for this question.

$13 Z$

No image has yet been uploaded for this question

Solution(s):

From user: ar857

$$
\begin{aligned}
& \frac{2008 \text { II } 13 z}{2008 y^{11}-7 y^{2}+12 y=144 x} \\
& \lambda^{2}-7 \lambda+12 \\
& y_{c}=c_{1} e^{n^{4 x}}+c_{2} e^{3 x} \\
& y_{p}=K x+B \\
& L y=0-7 k+12 k x+12 B=144 x \Rightarrow k=12 \quad B=7 \\
& y=c_{1} e^{4 x}+c_{2} e^{3 x}+12 x^{1}+7 \\
& y(0)=c_{1}+c_{2}+7=0 \\
& y^{\prime}(0)=4 c_{1}+3 c_{2}+12=0 \quad c_{1}-21+12=0 \quad \begin{array}{c}
c_{2}=-16 \\
c_{1}=9
\end{array} \\
& y=9 e^{4 x}-16 e^{3 x}+12 x+7 \\
& \text { b) } y^{\prime \prime}+3 y^{\prime}+2 y=10 \sin x \\
& \lambda^{2}+3 \lambda+2=0 \quad \lambda=-2 \quad \lambda=-1 \\
& y_{p}=k \sin \lambda+B \cos x \\
& y^{\prime} p=k \cos x+B \sin x \\
& y^{n} p=-k \sin x-B \cos x \\
& L_{y}=-k \sin x-B \cos x+3 k \cos x-3 B \sin x+2 k \sin x+2 B \cos x=10 \sin x \\
& A K-3 B+4 K=10 \\
& \begin{array}{ll}
\angle B+3 K+B=0 \quad B=-3 \\
K=1
\end{array} \\
& y=c_{1} e^{-2 x}+c_{2} e^{-x}+\sin x-3 \cos x \\
& y(0)=c_{1}+c_{2}-3=0 \\
& \begin{array}{lll}
y^{\prime}(0)=-2 c_{1}-c_{2}+1=0 \quad-6+2 c_{2}-3 c_{2}+1=0 \quad c_{1}=-y^{-2}
\end{array} \\
& y=-2 e^{-2 x}+5 e^{-x}+\sin x-3 \cos x \\
& \text { c) } y^{\prime \prime}+2 y^{\prime}+y=8 e^{-x} \\
& \lambda^{2}+2 \lambda+1 \quad y_{c}=c_{1} e^{-x}+c_{2} x e^{-x} \\
& y_{p}=k x^{2} c^{-x} \\
& \log =\left(2 e^{-x} k-2 x x^{-1} k x^{+4}+x^{2}\right)+2\left(2 x e^{-x} k=x^{2} e^{-x} k\right)+x^{2} e^{-x} k=8 e^{-x} \\
& t y=2 e^{-x} k=8 e^{-x} \quad k=4 \\
& y=c_{1} e^{-x}+c_{2} x e^{-x}+4 x^{2} e^{-x} \\
& y(0)=c_{1}+c_{2}=0 \\
& y^{\prime}(0)=-c_{1}-c_{2}=0 \\
& y=4 x^{2} e^{-x}
\end{aligned}
$$

14T

No image has yet been uploaded for this question

Solutions):

From user: ar857

$$
\begin{aligned}
& 2008 \text { 14 TI } \\
& \text { a) } u=A \cdot \cosh ^{-2}(x-v t) \\
& 2 v / 2 t=\quad 2 A \cosh ^{-3}(x-v t) \sinh (x-v t) \\
& 2 u / 2 x=-2 A \text { cosh }^{-3} \sinh \\
& 2^{3} / 2 x^{2}=-2 A \cosh ^{-2}+6 A \cosh ^{-4} \sinh ^{2} \\
& 2 u^{3} / 2 x^{3}=4 A \cosh ^{-3} \operatorname{sihh}+12 A \cosh ^{-4} \operatorname{sihh} \cosh -24 A \cosh ^{-5} \sinh ^{3} \\
& \frac{\partial u}{2 x-6 u} \frac{2 u}{2 x}+\frac{\partial^{2} u}{2 x^{3}}=\frac{2 A V \sinh }{\cosh ^{3}}+12 \frac{A \sinh }{\cosh ^{3}} \cdot \frac{A}{\cosh ^{2}}+\frac{4 A \sin ^{3} t}{\cosh ^{3}}+\frac{12 A \sin h}{4 \cosh { }^{3}} \\
& -\frac{24 A \sinh \left(\cosh ^{2}-1\right)}{\cosh 5} \\
& =\frac{\sinh }{\cosh ^{3}} \cdot\left(2 A V+12 A+4 A-24 A+\frac{\sinh }{\cos 5^{3}}\left(24 A+12 A^{2}\right)=0\right. \\
& \text { for } A=-2 \quad V=4 \\
& \text { i) } \left.\text { b) } \frac{\partial \partial f}{\partial x(\partial t}\right)+\left(\frac{\partial f}{\partial x}\right)\left(\frac{\partial^{2} f}{\partial x^{2}}\right)=k \frac{\partial^{3} f}{\partial x^{2}}=\frac{\partial}{\partial t}\left(\frac{\partial f}{\partial x}\right)+y \frac{\partial}{\partial y}\left(\frac{\partial x}{\partial x}\right)=k \frac{\partial}{\partial x} \frac{\partial}{\partial x} \frac{\partial f}{\partial x} \\
& \text { ii) } \frac{\partial g}{\partial t}=-\frac{1}{\partial k} \frac{\partial t}{\partial t} e^{-t / 2 k} \\
& \frac{\partial y}{\partial x}=-\frac{1}{\partial k} \frac{\partial f}{\partial x} e^{-f / 2 x} \\
& \left.k \frac{\partial z}{\partial x^{2}}=\frac{k}{}=\frac{1}{2} \frac{\partial f}{2 x^{2}} e^{t / 2 x}+\frac{1}{4 k^{2}}\left(\frac{\partial t}{z x}\right)^{2} e^{-t / 22}\right) \\
& =e^{-f / 2 k} \cdot \frac{1}{2 k}\left(\frac{1}{2}\left(\frac{\theta t}{\partial x}\right)^{2}-k \frac{\partial z}{2 x^{2}}\right)=e^{-t / 2 \cdot \frac{1}{2 k}} \frac{\partial t}{\partial t}=\frac{\partial g}{2 x}
\end{aligned}
$$

$15 Z$

No image has yet been uploaded for this question No solution has yet been submitted for this question.

No image has yet been uploaded for this question
No soution has yet been submitted for this question.

17X

No image has yet been uploaded for this question No soution has yet been submitted for this question.

18R*

No image has yet been uploaded for this question No soution has yet been submitted for this question.

19T*

No image has yet been uploaded for this question
No soution has yet been submitted for this question.

