2017 Mathematics (2)

This pdf was generated from questions and answers contributed by members of the public to Christopher Lester's tripos/example-sheet solution exchange site http://cgl20.user.srcf.net/. Nothing (other than raven authentication) prevents rubbish being uploaded, so this pdf comes with no warranty as to the correctness of the questions or answers contained. Visit the site, vote, and/or supply your own content if you don't like what you see here.
This pdf had url http://cgl20.user.srcf.net/camcourse/paperpdf/39? withSolutions=1. This pdf was creted on Thu, 25 Apr 2024 21:32:50 +0000.

Section A

1

Consider the two intersecting lines given by equations

$$
\boldsymbol{r}=\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)+s\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right), \quad \boldsymbol{r}=\left(\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right)+t\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)
$$

where s and t are real parameters.
(a) At what angle do the lines intersect?
(b) Find the point at which they intersect.

Solution(s):

From user: lester
(a) $\quad r_{1}=\underline{a}+s \underline{b}$ angle of intersection $\theta=\cos ^{-1}(\underline{\hat{b}} \cdot \underline{\hat{d}})=\cos ^{-1}\left(\frac{0}{\operatorname{son} \text { enthys }}\right)=\frac{\pi}{2}$ $r_{2}=\underline{c}+t \underline{d}$
(b) Intersect when $\underline{a}+s \underline{b}=\underline{c}+t \underline{d}$

$$
\begin{aligned}
& \Rightarrow \underline{a} \cdot \underline{b}+s|\underline{b}|^{2}=\underline{c} \cdot \underline{b} \quad(\sin e \quad \underline{b} \cdot \underline{d}=0) \\
& \Rightarrow s=\frac{\underline{b} \underline{b}-\underline{a} \cdot \underline{b}}{|\underline{b}|^{2}}=\frac{(\underline{a}-\underline{a}) \cdot \underline{b}}{|\underline{b}|^{2}} \\
& \Rightarrow \text { interect at } \underline{r}=\underline{a}+(\underline{c}-\underline{a}) \cdot \underline{b} \underline{b} \\
& \Rightarrow\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)+\left(\begin{array}{c}
-1 \\
-1 \\
-2
\end{array}\right) \cdot\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right) \frac{1}{3}\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)+0\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right) .
\end{aligned}
$$

2
Consider $f(z)=z \mathrm{e}^{\mathrm{i} z}$, where $z=x+\mathrm{i} y$ and x and y are real.
(a) Find the real part of $f(z)$.
(b) Find the imaginary part of $f(z)$.

Solution(s):

From user: lester

$$
\begin{aligned}
f(z)=z e^{i z} \Rightarrow f=(x+i y) e^{-y} e^{i x} & =(x+i y) e^{-y}(\cos x+i \sin x) \\
\therefore \operatorname{Re}(f) & =e^{-y}(x \cos x-y \sin x) \\
\operatorname{tm}(f) & =e^{-y}(y \cos x+x \sin x)
\end{aligned}
$$

3

Consider the matrix

$$
\left(\begin{array}{ll}
0 & a \\
a & 0
\end{array}\right)
$$

where $a \neq 0$ is a real number.
(a) Compute the matrix's eigenvalues.
(b) Find its normalised eigenvectors.

Solutions):

From user: lester

$$
M=\left(\begin{array}{ll}
0 & a \\
a & 0
\end{array}\right), \quad a \neq 0 . \quad M\binom{1}{1}=\binom{a}{a} \quad \& M\binom{1}{-1}=\binom{-a}{a}
$$

$\therefore M$ has evals ta $\&-a$ with normalised evecs $\frac{1}{\sqrt{2}}\binom{1}{1}$ and $\frac{1}{\sqrt{2}}\binom{1}{-1}$ respectively.

4
Find the first two non-zero terms in the Taylor series expansion of $x^{3} \cos ^{2} x$ around the point $x=0$.

Solutions):

From user: lester

$$
x^{3} \cos ^{2} x=x^{3}\left(1-\frac{x^{2}}{2!}+\cdots\right)^{2}=x^{3}\left(1-x^{2}+\cdots\right)=x^{3}-x^{5}+\ldots
$$

5

Find the first two non-zero terms in the Fourier series expansion of the function $\cos ^{4} x$, defined on $-\pi \leqslant x<\pi$.

Solutions):

From user: lester

$$
\begin{aligned}
& {\left[\cos ^{2} x=\frac{1}{2}(\cos 2 x+1)\right]} \\
& \begin{aligned}
\cos ^{4} x & =\left(\cos ^{2} x\right)^{2}=\left(\frac{1}{2}(\cos 2 x+1)\right)^{2}=\frac{1}{4}+\frac{1}{2} \cos 2 x+\frac{1}{4} \cos ^{2} 2 x \\
& =\frac{1}{4}+\frac{1}{2} \cos 2 x+\frac{1}{4} \cdot \frac{1}{2}(\cos 4 x+1)=\underbrace{\frac{3}{8}+\frac{1}{2} \cos 2 x}_{\text {first two terms }}+\frac{1}{8} \cos 4 x
\end{aligned}
\end{aligned}
$$

6
Consider the two vector fields

$$
\boldsymbol{F}=(\sin x, \sin y, \sin z), \quad \boldsymbol{G}=(\cos x, \cos y, \cos z)
$$

(a) Calculate $\boldsymbol{F} \times \boldsymbol{G}$.
(b) Hence find $\nabla \cdot(\boldsymbol{F} \times \boldsymbol{G})$.

Solutions):
From user: lester

$$
\begin{array}{ll}
E=\left(s_{x}, s_{y}, s_{z}\right) & s=" \sin " \\
\underline{G}=\left(c_{x}, c_{y}, c_{z}\right) & c=" \cos "
\end{array}
$$

(a) $\underline{F}_{\wedge} \underline{G}=\left(\begin{array}{l}s_{y} c_{z}-s_{z} c_{y} \\ s_{z} c_{x}-s_{x} c_{z} \\ s_{x} c_{y}-s_{y} c_{x}\end{array}\right)$
(b) $\underline{\nabla} \cdot(\underline{E} \wedge \underline{G})=0$ as no x in $(F \wedge \underline{G})_{x}$, etc. 7

Consider the ordinary differential equation

$$
\frac{d^{2} y}{d x^{2}}+9 y=-7 \cos 4 x
$$

(a) Calculate its complementary function.
(b) Calculate its particular integral.

Solutions):

From user: lester

$$
\frac{d^{2} y}{d x^{2}}+9 y=-7 \cos 4 x .
$$

(a) $y_{c F}=A \cos 3 x+B \sin 3 x \quad$ (by inspector).
(b) $y_{P I}=\lambda \cos 4 x ;-16 \lambda+9 \lambda=-7 \Rightarrow \lambda=1 \Rightarrow y_{P I}=\cos 4 x$.

8

If $\boldsymbol{F}=\left(y^{2}, x^{2}, 0\right)$, compute the surface integral

$$
\int_{S} \boldsymbol{F} \cdot d \boldsymbol{S}
$$

where
(a) S is a circular disk in the $x-y$ plane centred on the origin with unit radius, and with surface normal pointing in the positive z-direction,
(b) S is a square in the $x-z$ plane centred on the origin with sides of unit length parallel to the x - and z-axes and with surface normal pointing in the positive y direction.

Solutions):

From user: lester

$$
\begin{aligned}
& E=\left(\begin{array}{c}
y^{2} \\
x^{2} \\
0
\end{array}\right) \\
& \nabla_{\wedge E}=\left(\begin{array}{c}
0 \\
0 \\
2 x-2 y
\end{array}\right)
\end{aligned}
$$

(a) $\int_{s} E \cdot d \underline{s}=\int_{s+y, y}\left(\begin{array}{l}? \\ 0 \\ 0\end{array}\right) \cdot\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) d ?=0$.
(b)

9
Consider the twice-differentiable function $u=u(\xi)$.
(a) If $\xi=x+2 \sqrt{y}$, calculate $\partial^{2} u / \partial y^{2}$.
(b) Show by substitution that $u(x+2 \sqrt{y})$ solves the partial differential equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}-\frac{1}{2} \frac{\partial u}{\partial y}-y \frac{\partial^{2} u}{\partial y^{2}}=0 \tag{1}
\end{equation*}
$$

Solutions):
From user: lester

$$
\begin{aligned}
& \xi=x+2 \sqrt{y}, \quad u=u(\xi) \\
& \text { (a) } \frac{\partial u}{\partial y}=\frac{d u}{d \xi} \frac{\partial \xi}{\partial y}=u^{\prime} \cdot \frac{1}{\sqrt{y}} \\
& \frac{\partial^{2} u}{\partial y^{2}}=-\frac{1}{2} u^{\prime} y^{-\frac{3}{2}}+\frac{1}{\sqrt{y}} u^{\prime \prime} \frac{1}{\sqrt{y}}=\frac{u^{\prime \prime}}{y}-\frac{1}{2} \frac{u^{\prime}}{y^{3 / 2}} . \\
& \text { (b) Similarly } \frac{\partial u}{\partial x}=u^{\prime} \text { \& } \frac{\partial^{2} u}{\partial x^{2}}=u^{\prime \prime} . \\
& \therefore \frac{\partial^{2} u}{\partial x^{2}}-\frac{1}{2} \frac{\partial u}{\partial y}-y \frac{\partial^{2} u}{\partial y^{2}}=u^{\prime \prime}-\frac{1}{2} \frac{u^{\prime}}{\sqrt{y}}-y\left(\frac{u^{\prime \prime}}{y}-\frac{1}{2} \frac{u^{\prime}}{y^{3 / 2}}\right)=O . Q \in D .
\end{aligned}
$$

10
A finite population of cockatiels has equal numbers of males and females. The probability that a male can sing is p. The probability that a female can sing is q.
(a) What is the probability that a cockatiel randomly selected from the population can sing?
(b) A cockatiel is observed to sing. What is the probability that it is male?

Solutions):
From user: lester
(a) $\quad P($ singer $)=\frac{1}{2} p+\frac{1}{2} q$
(b) $p($ male $/$ singes $)=\frac{p(\text { singe } \mid \text { male }) p(\text { male })}{p(\text { singer })}=\frac{p \cdot \frac{1}{2}}{\frac{1}{2}(p+q)}=\frac{p}{p+q}$.

Section B
(a) For the three position vectors \mathbf{a}, \mathbf{b} and \mathbf{c} show explicitly using components ($\mathbf{a}=$ $a_{x} \hat{\mathbf{i}}+a_{y} \hat{\mathbf{j}}+a_{z} \hat{\mathbf{k}}$, etc.) that the vector triple product can be expressed as

$$
\begin{equation*}
\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c} \tag{5}
\end{equation*}
$$

Hence, using properties of the scalar triple product (or otherwise), show that

$$
(\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d})=(\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d})-(\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c})
$$

[Note that $\mathbf{a} \times \mathbf{b} \equiv \mathbf{a} \wedge \mathbf{b}$.
(b) Write down the equation for a sphere S given that its centre is at position vector a and its radius is $p>0$.

Now suppose there is a second sphere S^{\prime} with its centre at \mathbf{b} and radius $q>0$. What conditions must $\mathbf{a}, \mathbf{b}, p$ and q satisfy in order for the two spheres S and S^{\prime} to intersect in a circle?
If S and S^{\prime} do intersect, show that the plane in which the circle of intersection lies is given by

$$
\begin{equation*}
2(\mathbf{b}-\mathbf{a}) \cdot \mathbf{r}=p^{2}-q^{2}+b^{2}-a^{2} \tag{4}
\end{equation*}
$$

where $a=|\mathbf{a}|$ and $b=|\mathbf{b}|$.

Solution(s):

From user: lester
(a) I dort like the inflexible way this question requires we work in components. (2)

$$
\begin{aligned}
& \underline{b_{\wedge}} \underline{c}=\left|\begin{array}{ccc}
i & j & k \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=\left(\begin{array}{l}
b_{1} c_{3}-c_{2} b_{3} \\
b_{3} c_{1} \\
b_{1} \\
b_{1} c_{1} c_{3} \\
c_{2}-b_{2} \\
c_{1}
\end{array}\right) \\
& \therefore a_{\wedge}\left(b_{\wedge} c_{1}\right)=\left|\begin{array}{ccc}
i & j & \underline{k} \\
a_{1} & a_{2} & a_{3} \\
b_{2} c_{3}-c_{2} b_{3} & b_{3} c_{1}-b_{1} c_{3} & b_{1} c_{2}-b_{2} c_{1}
\end{array}\right|=\left(\begin{array}{c}
a_{2} b_{1} c_{2}-a_{2} b_{2} c_{1}-a_{3} b_{3} c_{1}+a_{3} b_{1} c_{2} \\
\text { and } a n d h e l \text { line } \\
\text { and a third line }
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \underline{a} \wedge \underline{b} \cdot \underline{c} \wedge \underline{d}=\varepsilon_{i j k} a_{j} b_{k} \varepsilon_{i l m} c_{c} d_{m}=\left(\delta_{j l} \delta_{k m}-\delta_{j m} \delta_{k c}\right) a_{j} b_{k} c_{l} d_{m} \\
& =a_{l} b_{m} c_{l} d_{m}-a_{m} b_{l} c_{l} d_{m}=(a \cdot d(b \cdot d)-(a \cdot d)(b \cdot c) . \quad \text { QED }
\end{aligned}
$$

(b) Sphere 1: $|\underline{r}-\underline{a}|=p$. Sphere 2: $|\underline{r}-\underline{b}|=q$.

Possible spae configurations are:

A

B

C

D

A happens if $|\underline{a}-\underline{b}|>p+q$. ${ }^{\text {Torterscet }}$ in a circle
$\left.\begin{array}{l}\text { C happens if }|\underline{b}-a|+q<p . \\ \text { D) happens if }|\underline{b}-\underline{a}|+p<q .\end{array}\right\} \Rightarrow B$ happens if $\left\{\begin{array}{ll}|\underline{a}-\underline{b}| \leq p+q & \& \\ |\underline{a}-\underline{b}|+q \geqslant p & \& \\ |\underline{a}-b|+p \geqslant q\end{array}\right\}$
Note that we include within "Intersect in a circle" the degneerate "point condad" case. If this is undesired, $\leqslant \varepsilon \geqslant$ can be replaced with $\langle \&\rangle$.
When they intersect, points on the intersection satisfy:

$$
\left\{\begin{array}{l}
|r-a|=p \\
|\underline{a}-\underline{b}|=q
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
r^{2}-2 \underline{r} \cdot a+\underline{a}^{2}=p^{2} \\
\underline{r}^{2}-2 r \cdot \underline{b}+\underline{b}^{2}=q^{2}
\end{array}\right\} \Rightarrow\left\{2(\underline{b}-q) \cdot \underline{r}+\underline{a}^{2}-\underline{b}^{2}=q^{2}-q q^{2}\right\} .
$$

12X
(a) (i) Write down the infinitesimally small volume element in spherical polar coordinates: (r, θ, ϕ).
(ii) Assume that the Earth is a sphere of radius R and that the density ρ of the atmosphere varies with height h above the surface as $\rho=\rho_{0} \exp \left(-h / h_{0}\right)$ where ρ_{0} and h_{0} are positive constants. Find an integral expression for the mass of the atmosphere and integrate to obtain an explicit formula in terms of ρ_{0}, h_{0} and R.
(b) (i) Sketch the region of integration for the following double integral:

$$
\begin{equation*}
\int_{x=-a}^{a} \int_{y=x^{2}}^{y=\sqrt{1-x^{2}}} d y d x \tag{4}
\end{equation*}
$$

where $a^{2}=(\sqrt{5}-1) / 2$.
(ii) Evaluate the integral, giving your answer in the form $A \sin ^{-1} a+B a^{3}$ where A and B are to be found.

Solutions):

From user: cgl20
(a) (i) $d V=r^{2} \sin \theta d r d \theta d \phi$
$\begin{aligned} \text { (ii) } \quad \rho & =\rho_{0} e^{-h / h_{0}} \\ \therefore M & =\int_{r=R}^{\infty} \int_{\theta=0}^{\pi} \int_{\phi=0}^{2 \pi} \rho_{0} e^{-\frac{r-R}{h_{0}}} r^{2} \sin \theta d r d \theta d \phi\end{aligned}$

$=4 \pi \rho_{0} h_{0}\left(R^{2}+2 R h_{0}+2 h_{0}^{2}\right) . \quad \Rightarrow I_{2}=R^{2} h_{0} e^{-R / h_{0}}+2 h_{0}\left(R h_{0} e^{-R / h_{0}}+h_{0}\left(h_{0} e^{-R h_{0}}\right)\right)$
$=4 \pi \rho_{0} h_{0}\left(R+2 R h_{0}+2 h_{0}\right)$. y_{m} working over here $\left.\Rightarrow\right)=h_{0} e^{-R / h_{0}}\left(R^{2}+2 R h_{0}+2 h_{0}^{2}\right)$
(b) (i)

$J=\int_{-\sin ^{-1}(a)}^{\sin ^{-1}(a)} \cos ^{2} \theta d \theta=\int_{-\sin ^{-1}(a)}^{x} \frac{\sin ^{-1}(a)}{2}(\cos 2 \theta+1) d \theta$
$=\left[\frac{1}{4} \sin 2 \theta+\frac{\theta}{2}\right]_{-\sin ^{-1}(a)}^{\sin ^{-1}(a)}=\frac{1}{2} \sin \left(2 \sin ^{-1}(a)\right)+\sin ^{-1}(a)$
$=a \cos \left(\sin ^{-1} a\right)+\sin ^{-1} a$
$=a \sqrt{1-a^{2}}+\sin ^{-1} a$

$$
\therefore \quad I=a \sqrt{1-a^{2}}+\sin ^{-1} a-\frac{2}{3} a^{3} \quad 1-a^{2}=1-\frac{\sqrt{5}-1}{2}=\frac{3}{2}-\frac{\sqrt{5}}{2}
$$

But question requests form built yon a ${ }^{3}$ toms:
$a \sqrt{1-a^{2}}=a^{\frac{1}{a^{4}}-\frac{1}{a^{2}}}=a \sqrt[3]{\frac{4}{(\sqrt{5}-1)^{2}}-\frac{2}{\sqrt{5}-1}}=a^{\frac{4-2 \sqrt{5}+2}{(\sqrt{5}-1)^{2}}}=\sqrt[3]{\frac{6-2 \sqrt{5}}{6-2 \sqrt{5}}}=a^{3}$, so: $I=a^{3}+\sin ^{-1} a-\frac{2}{3} a^{3}=\frac{1}{3} a^{3}+\sin ^{-1} a$. In the question's notation: $A=\frac{1}{1}, B=\frac{1}{3}$.

If a vector field can be written as the gradient of some scalar field, $\boldsymbol{F}=\nabla \Phi$, the vector field is said to be 'conservative'.
(a) Show, using Cartesian coordinates, that the line integral $\int_{\mathcal{C}} \boldsymbol{F} \cdot \boldsymbol{d} \mathbf{x}$ of a conservative vector field, \boldsymbol{F}, along some path, \mathcal{C}, can be calculated by using the scalar field evaluated at the end points.
(b) Show, using Cartesian coordinates, that the curl of a conservative vector field is everywhere zero.
(c) Calculate the curl of the vector field

$$
\boldsymbol{F}=\left(2 x y-z^{3}, x^{2}-2 y,-3 x z^{2}-1\right)
$$

and thereby show that \boldsymbol{F} is conservative.
(d) Calculate the underlying scalar field Φ by evaluating the line integral of \boldsymbol{F} along the piecewise linear path joining $(0,0,0)$ to $(x, 0,0)$ to $(x, y, 0)$ to (x, y, z). Why is the result undefined with respect to an additive constant?
(e) Calculate explicitly the line integral of \boldsymbol{F} along the parabolic path described by $\left(t, t, t^{2}\right)$ from $t=1$ to $t=2$.

Solution(s):

From user: lester
$E=\nabla \Phi$
(a) $\int_{c} E \cdot d \underline{x}=\int_{C} \nabla \Phi \cdot d x=\int_{c}\left(\frac{\partial \Phi}{\partial x} d x+\frac{\partial \Phi}{\partial y} d y+\ldots\right)=\int_{c} d \Phi=[\Phi]_{c} Q Q D$.
(b) $(\nabla \wedge \nabla \Phi)_{i}=\varepsilon_{i j k} \frac{\partial}{\partial \partial_{j}} \frac{\partial}{\partial \lambda_{k}} \Phi . \quad \varepsilon_{i j k}=-\varepsilon_{i k j}$ but $\frac{\partial}{\partial x_{j}} \frac{\partial}{\partial_{k}}=\frac{\partial}{\partial \partial_{k}} \frac{\partial}{\partial x_{j}}$ so $(\nabla \wedge \nabla \Phi)_{i}=0 \quad \forall i$.
(c) $E=\left(2 x y-z^{3}, x^{2}-2 y,-3 x x^{2}-1\right)=\underline{\nabla}(\underbrace{\left(x^{2} y-x z^{3}-y^{2}-z\right.}_{\text {I up to a constant }})$ so E consecutive $\& \underline{\nabla} \wedge E=0$
(d) We already found I in (c), up to a cost. Nonetheless, we are asked to find it another more

Then $\Phi(x)-\Phi(0)=\int_{\Gamma} E \cdot d \underline{x}=\int_{t=0}^{1} d t(\underbrace{\left(2\left(t t_{2}\right) 0-0^{3}\right) x}_{\Gamma_{1} p \text { att }}+\underbrace{\left(x^{2}-2\left(t_{y}\right)\right) y}_{\Gamma_{2} p^{\text {port }}}+\underbrace{\left.\left(-3 x\left(t_{z}\right)^{2}-1\right) z\right)}_{\Gamma_{3} p \text { ort }}$
$=\int_{t=0}^{1} d t\left(\left(x^{2} y-z\right)-\left(2 y^{2}\right) t-\left(3 x z^{2}\right) t^{2}\right)=\left[\left(x^{2} y-z\right) t-y^{2} t^{2}-x z^{2} t^{3}\right]_{0}^{1}=x^{2} y-z-y^{2}-x z^{2}$.
This is also only Φ ip to a constant as it is $\Phi(\underline{x})-\Phi(0)$.
(e) With $\Gamma=\left(t, t, t^{2}\right)$ then $d x=(1,1,2 t) d t$ and

$$
\begin{aligned}
\int_{t=1}^{2} E \cdot d \underline{x} & =\int_{1}^{2} d t\left(\left(2 t^{2}-t^{6}\right) \cdot 1+\left(t^{2}-2 t\right) \cdot 1+\left(-3 t^{5}-1\right) 2 t\right) \\
& =\int_{1}^{2} d t\left(-4 t+3 t^{2}-7 t^{6}\right)=\left[-2 t^{2}+t^{3}-t^{7}\right]_{1}^{2}=\left(-88^{5}+8^{6}-2^{7}\right)-(-2+x-x)=2-128=-126 .
\end{aligned}
$$

$$
\text { Check: } \Phi(2,2,4)-\Phi(1,1,1)=\left(88-2.4^{3}-44-44\right)-(x-x-1-1)=-2^{7}+2=-126 \quad \sqrt{ }
$$

14R

(a) Suppose X is a discrete random variable taking positive integer values $0,1,2, \ldots$. Its probability distribution is denoted by $P(X)$. Write down expressions for the mean μ and variance σ^{2}.
(b) When Cambridge United football team play a game, the probability that the total number of goals scored is X is given by

$$
P(X)=A \frac{\lambda^{X}}{X!},
$$

where A is a normalisation constant and λ is a positive constant.
(i) If P is normalised, show that $A=\mathrm{e}^{-\lambda}$.
(ii) In any game Cambridge United plays, what is the probability, in terms of λ, that K goals or fewer are scored?
(iii) Show that the mean of the distribution P is λ.
(c) In one season, the Cambridge United team play 10 games of football. You may assume that the probability of goal-scoring in every game is given by equation (\dagger).
(i) What is the probability that at least one goal is scored in every game of the season?
(ii) Show that the probability that only 1 goal is scored in total during the team's entire season is $10 \lambda \mathrm{e}^{-10 \lambda}$.
(iii) Calculate the probability that 2 goals are scored in total during the team's season.

Solutions):

From user: lester
(a) This question says "positive integer values" but then lists non-negative integers $0,1,2,3, \ldots$ Presumably it means the latter. Poor proof reading!
$\mu=\sum_{x=0}^{\infty} x P(X=x), \quad \sigma^{2}=\sum_{x=0}^{\infty}(x-\mu)^{2} P(X=x)$.
(b) (i) $1=\sum_{x=0}^{\infty} P(X=x)=\sum_{x=0}^{\infty} A \frac{\lambda^{x}}{x!}=A \sum_{x=0}^{\infty} \frac{\lambda^{x}}{x!}=A e^{\lambda} \therefore A=e^{-\lambda}$. QED
(ii) $P(X \leqslant K)=\sum_{x=0}^{K} P(X=x)=e^{-\lambda} \sum_{x=0}^{K} \frac{\lambda^{x}}{x!}$
(iii) $\mu=\sum_{x=0}^{\infty} x\left(e^{-\lambda} \frac{\lambda^{x}}{x!}\right)=\sum_{x=1}^{\infty} \frac{e^{-\lambda} \lambda^{x-1} \lambda}{(x-1)!}=\lambda e^{-\lambda} \sum_{t=0}^{\infty} \frac{\lambda^{t}}{t!}=\lambda e^{-\lambda} e^{\lambda}=\lambda$. QED
(c) (i) $P($ at least 1 goal in each of 10 games $)=(P(x \geqslant 1))^{10}=(1-P(x=0))^{10}=\left(1-\frac{\lambda_{0}^{0}}{0!}\right)^{10}=\left(1-e^{-\lambda}\right)^{10}$.

(iii) $P(2$ goals in season $)=\binom{10}{2}(P(x=1))^{2}(P(x=0))^{8}+\binom{10}{1} P(x=2)(P(x=0))^{9}$

$$
=\frac{10 \times 9}{2}\left(\frac{\lambda^{1}}{1!} e^{-\lambda}\right)^{2}\left(\frac{\lambda^{0}}{0!} e^{-\lambda}\right)^{8}+10\left(\frac{\lambda^{2}}{2!} e^{-\lambda}\right)\left(\frac{\lambda^{0}}{0!} e^{-\lambda}\right)^{9}
$$

$$
=e^{-10 \lambda}\left(45 \lambda^{2}+5 \lambda^{2}\right)=50 \lambda^{2} e^{-10 \lambda}
$$

(a) Find the relevant integrating factor and solve the following equations:
(i) $\left(2 x y^{2}-y\right) d x+\left(2 x-x^{2} y\right) d y=0$,
(ii) $\quad\left(2 y \sin x+3 y^{4} \sin x \cos x\right) d x-\left(4 y^{3} \cos ^{2} x+\cos x\right) d y=0$.

You may give these solutions in implicit form.
(b) Consider an equation of the form

$$
y=p x+f(p),
$$

where $p \equiv \frac{d y}{d x}$ and f is a differentiable function. Show that

$$
\begin{equation*}
\left[x+f^{\prime}(p)\right] \frac{d p}{d x}=0 \tag{2}
\end{equation*}
$$

where $f^{\prime}(p) \equiv \frac{d f}{d p}$.
Hence, or otherwise, find all solutions for the equation

$$
\begin{equation*}
y=p x+\frac{1}{p-1} . \tag{8}
\end{equation*}
$$

Solutions):

From user: lester
(b) $y=p x+f(p) \quad p=\frac{d y}{d x}$

$y \frac{d p}{10}=0$ then $\frac{d^{2} y}{d x^{2}}=0 \Rightarrow y=A x+B$.
to $j^{\prime}(\rho)=-x$ then $-x=\frac{-1}{(\rho-1)^{2}} \Rightarrow(p-1)^{2}=\frac{1}{x} \Rightarrow \frac{d y}{d x}-1= \pm x^{-\frac{1}{2}} \Rightarrow y=x \pm 2 x^{\frac{1}{2}}+c$

Check: $y=x \pm 2 x^{\frac{k}{x}}+c \Rightarrow p=1 \pm x^{-\frac{1}{2}} \Rightarrow p^{x+\frac{1}{p^{-1}}}=x \pm x^{\frac{1}{2}}+\frac{1}{1 x^{2} x^{2}}=x \pm 2 x^{\frac{1}{2}}=y$ only $f=0$.
\therefore Answer: $y=A x+\frac{1}{A-1}$ yore $A \neq 1$, or $y=x \pm 2 \sqrt{x}$.
(a) For the vector field $\boldsymbol{F}(x, y, z)$ give formulae in Cartesian coordinates for:
(i) $\nabla \cdot \boldsymbol{F}$,
(ii) $\nabla \times \boldsymbol{F}$.
(b) The closed surface S consists of the right triangular prism shown below.

For the vector field $\boldsymbol{F}=\left(0,(y+2 x-4)^{2}, 1-z^{2}\right)$:
(i) Calculate the outward flux for each of the five faces of the prism, and hence the total outward flux from S.
(ii) Calculate $\nabla \cdot \boldsymbol{F}$.
(iii) Find the volume integral of $\nabla \cdot \boldsymbol{F}$ over the interior of the prism.
(iv) Comment on the relation between your answers to parts (b)(i) and (b)(iii).

Solution(s):

From user: lester
(a) (i) $\underline{\nabla} \cdot \underline{F}=\frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y}+\frac{\partial F_{z}}{\partial z}$
(ii) $(\nabla \wedge E)_{x}=\frac{\partial F_{z}}{\partial y}-\frac{\partial F_{y}}{\partial z}$ and similarly for the other pts $\rangle_{z \in y}^{x} \searrow$,
(b) $\underline{F}=\left(0,(y+2 x-4)^{2}, 1-z^{2}\right)$
(i) $F /$ lux bot $=\int_{x=0}^{2} \int_{y=0}^{4-2 x}\left(1-0^{2}\right) \cdot(-1) d y d x=-($ Area bx $)=-4$

Flux top $=\operatorname{DiTTo~}_{\text {Dit }}^{\left.1-1^{2}\right)}((+1) d y d x=0$
(ii) $\nabla \cdot E=0+2(y+2 x-4)-2 z=2(y-z+2 x-4)$.
(iii) $\int_{V} \underline{\nabla} \cdot \underline{E} d v=\int_{z=0}^{1} \int_{x=0}^{2} \int_{y=0}^{4-2 x} 2(y-z+2 x-4) d y d x d z$

$$
=2 \int_{x=0}^{2} \int_{\substack{x=0 \\ 4-2=0}}^{4-2 x} y+2 x-4-\frac{1}{2} d y d x
$$

$$
\begin{aligned}
& \Rightarrow=\int_{x=0}^{2} 16-16 x+4 x^{2}+116 x-8 x^{2}-36+18 x d x \\
&=\int_{x=0}^{2}-20+18 x-4 x^{2} d x \\
& x_{x}
\end{aligned}
$$

$$
\begin{aligned}
=\int_{x=0}^{2} \int_{y=0}^{4-2 x} 2 y+4 x-9 d y d x & =\left[-20 x+9 x^{2}-\right. \\
& =-40+36-\frac{2^{5}}{3} \\
& =-4-32
\end{aligned}
$$

$$
=\int_{x=0}^{2}(4-2 x)^{2}+(4 x-9)(4-2 x) d x \ldots, \quad=-14 \frac{2}{3} .
$$

(iv) The answers to (i) $\&$ (iii) are the same, as expected by the divegerece theorem: $\int_{V} E \cdot d v=\int_{\partial v} E \cdot d s$.

$17 Z$

$$
\begin{aligned}
& F_{10 x_{x z}}=\int_{x=0}^{2} \int_{z=0}^{1}(0+2 x-4)^{2} \cdot(-1) d z d x=\int_{x=2}^{0}(2 x-4)^{2} d x=\left[\frac{1}{6}(2 x-4)^{3}\right]_{2}^{0}=\frac{1}{6}\left(-4^{3}\right)=-\frac{2^{6}}{2 \cdot 3}=-\frac{32}{3} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \text { Flex }_{\text {model }}=-4-\frac{32}{3}=-4-10 \frac{2}{3}=-14 \frac{2}{3}
\end{aligned}
$$

We can treat the following coupled system of differential equations as an eigenvalue problem:

$$
\begin{aligned}
2 \frac{d y_{1}}{d t} & =2 f_{1}-3 y_{1}+y_{2} \\
2 \frac{d y_{2}}{d t} & =2 f_{2}+y_{1}-3 y_{2}, \\
\frac{d y_{3}}{d t} & =f_{3}-4 y_{3},
\end{aligned}
$$

where f_{1}, f_{2} and f_{3} is a set of time-dependent sources, and y_{1}, y_{2} and y_{3} is a set of time-dependent responses.
(a) If these equations are written using matrix notation,

$$
\begin{equation*}
\frac{d \mathbf{y}}{d t}+\mathbf{K} \mathbf{y}=\mathbf{f}, \tag{6}
\end{equation*}
$$

what are the elements of \mathbf{K} ? Find the eigenvalues and eigenvectors of \mathbf{K}.
(b) In the case when the system is not excited, $\mathbf{f}=\mathbf{0}$, find all of the solutions having the form

$$
\begin{equation*}
\mathbf{y}(t)=\mathbf{y}(0) e^{-\gamma t} \tag{4}
\end{equation*}
$$

where $\gamma>0$ is a decay constant.
(c) If \mathbf{f} is held constant at \mathbf{f}_{0}, the response vector \mathbf{y} has the steady state value \mathbf{y}_{0} (that is, with $\frac{d \mathbf{y}}{d t}=0$). Write down \mathbf{y}_{0} in terms of \mathbf{f}_{0}, and find \mathbf{y}_{0} in the case where $\mathbf{f}_{0}=(1,1,1)^{T}$.
(d) Assume that \mathbf{y} starts in the steady state solution \mathbf{y}_{0} given in (c) with $\mathbf{f}_{0}=(1,1,1)^{T}$. Now suppose the source function abruptly falls to zero, $\mathbf{f}_{0}=(0,0,0)^{T}$, so that the response vector \mathbf{y} moves away from \mathbf{y}_{0}. Writing \mathbf{y} as a linear combination of the allowed solutions found in (b), derive an expression for the subsequent time evolution of the system.

[^0]

Solution(s):

From user: lester

(b) If $\frac{d y}{d t}+k_{\underline{y}}=0$ \& $\underline{y}=\underline{y}_{0} e^{-\gamma t}$ then $-\gamma \underline{y}_{0} e^{-\gamma t}+k \underline{y}_{0} e^{-\gamma t}=0 \Rightarrow k \underline{y}_{0}=\gamma \underline{y}_{0} \Rightarrow \gamma$ and \underline{y}_{0} are e-val and e-vecs of $K \Rightarrow$ possible solutions are of form $y=A\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right) e^{-t}+B\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right) e^{-2 t}+C\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) e^{-4 t}$ for constants $A, B \& C$. Ж
(c) If $k_{y_{0}}=\underline{f}_{0}, \underline{y}_{0}=K^{-1} \underline{f}_{0} . \quad\left[K^{-1}=\left(\begin{array}{ccc}\frac{1}{\frac{9}{4}-\frac{1}{4}}\left(\begin{array}{cc}\frac{3}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{3}{2}\end{array}\right) & 0 \\ 0 & 0 & \frac{1}{4}\end{array}\right)=\frac{1}{4}\left(\begin{array}{lll}3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 1\end{array}\right)\right]$ So of $\underline{f}_{0}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ then $\underline{y}_{0}=\frac{1}{4}\left(\begin{array}{lll}3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 1\end{array}\right)\binom{1}{1}=\left(\begin{array}{l}1 \\ 1 \\ 1 / 4\end{array}\right)$.
(d) We are asked to solve $\frac{d y}{d t}+K_{\underline{y}}=\underline{0}$ subject to $y(0)=\left(\begin{array}{l}1 \\ 1 \\ 1 / 4\end{array}\right)$, so we must find the $A, B \& C$ in \circledast that achieve this. Solve $\left\{\begin{array}{l}A+B=1 \\ A-B=1 \\ C=1 / 4\end{array}\right\} \Rightarrow A=1, B=0, C=\frac{1}{4} \Rightarrow y=1\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right) e^{-t}+0\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right) e^{-2 t}+\frac{1}{4}\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) e^{-4 t}=\left(\begin{array}{c}e^{-t} \\ e^{-t} \\ \frac{c}{4} e^{-4 t}\end{array}\right)$.

18S

(a) Suppose $f(x)$ is a 2π-periodic function defined on $-\pi \leqslant x<\pi$. Write down its Fourier series and give expressions for the coefficients appearing in it. Using the orthogonality relations or otherwise, determine the value of

$$
\begin{equation*}
\frac{1}{\pi} \int_{-\pi}^{\pi}(f(x))^{2} d x \tag{7}
\end{equation*}
$$

in terms of the Fourier coefficients of f (Parseval's identity).
(b) Show that the Fourier series of the 2π-periodic function $g(x)=x^{3}-\pi^{2} x$ for $-\pi \leqslant x<\pi$ is given by

$$
\begin{equation*}
g(x)=12 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{p}} \sin n x \tag{7}
\end{equation*}
$$

where the integer p should be determined.
(c) Using Parseval's identity for g, show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n^{6}}=\frac{\pi^{6}}{945} \tag{6}
\end{equation*}
$$

Solutions):

From user: lester
(a) $f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$ has period 2π.

$$
\begin{aligned}
& a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x \quad a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x \quad b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\pi}\left(2 \pi a_{0}^{2}+\pi \sum_{n} a_{n}^{2}+\pi \sum_{n} b_{n}^{2}\right)=2 a_{0}^{2}+\sum_{n}\left(a_{n}^{2}+b_{n}^{2}\right) \text {. }
\end{aligned}
$$

(b) $\quad g(x)=x^{3}-\pi^{2} x . g(x)$ is odd, so $a_{0}=a_{n}=0 \quad \forall n$.

$$
\begin{aligned}
g(x) & =x^{2}-\pi x \quad b_{n}
\end{aligned}=\frac{1}{\pi} \int_{-\pi}^{\pi}\left(x^{3}-\pi^{2} x\right) \sin n x d x: I_{k}=\int_{-\pi}^{\pi} x^{k} \sin n x d x=\left[x^{k} \frac{\cos n x}{n}\right]_{\pi}^{-\pi}+\frac{k}{n} \int_{-\pi}^{\pi} x^{k-1} \cos n x d x .
$$

By Porsoand's Theoren, then,

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left(\frac{12(-1)^{2}}{n^{3}}\right)^{2} & =\frac{1}{\pi} \int_{-\pi}^{\pi}\left(x^{3}-\pi^{2} x\right)^{2} d x=\frac{1}{\pi} \int_{-\pi}^{\pi} x^{6}-2 \pi^{2} x^{4}+\pi^{4} x^{2} d x=\frac{1}{\pi}\left[\frac{1}{7} x^{7}-\frac{2}{5} \pi^{2} x^{5}+\frac{1}{3} \pi^{4} x^{3}\right]_{-\pi}^{\pi} \\
& =2 \pi^{6}\left(\frac{1}{7}-\frac{2}{5}+\frac{1}{3}\right)=2 \pi^{6} \frac{15-42+35}{105}=\frac{16 \pi^{6}}{105} \\
& \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^{6}}=\frac{16 \pi^{6}}{105 \times 144}=\frac{4^{2} \pi^{6}}{105 \cdot 4^{2} \cdot 3^{2}}=\frac{\pi^{6}}{945} . \text { QED. }
\end{aligned}
$$

The interior region of a paraboloid of height H and radius R of the base is defined by the following inequalities

$$
0<z<H\left[1-\left(x^{2}+y^{2}\right) / R^{2}\right] .
$$

Either a cylinder of height h and radius r or a rectangular parallelepiped with sides a, b and c can be inscribed into the paraboloid as shown by dashed lines in the left and right panels of the diagram, respectively.

By using the method of Lagrange multipliers,
(a) show that the maximum possible volume of a cylinder, V_{c}, inscribed into the paraboloid as shown in the diagram above is

$$
\begin{equation*}
V_{\mathrm{c}}=\frac{\pi R^{2} H}{4} \tag{7}
\end{equation*}
$$

(b) find in terms of H and R the maximum possible volume of the rectangular parallelepiped, V_{p}, inscribed into the paraboloid,
(c) and thus determine which shape can produce a larger volume.
[Hint: You need not prove that suitable extrema you find are actually maxima.]

Solution(s):

From user: lester
(a) $\mathcal{L}(r, h, \lambda)=\pi r^{2} h+\lambda\left(H\left(1-\frac{r^{2}}{R^{2}}\right)-h\right)$
(1) $\frac{\partial L}{\partial r}=0=2 \pi r h-2 \lambda H \frac{r}{R^{2}} \Rightarrow r=0$, or $\pi h=\frac{\lambda H}{R^{2}}$
(2) $\frac{\partial \mathcal{L}}{\partial h}=0=\pi r^{2}-\lambda \Rightarrow \lambda=\pi r^{2}$ silly
(3) $\frac{\partial L}{\partial \lambda}=0 \Rightarrow h=H\left(1-\frac{r^{2}}{R^{2}}\right)$

$$
\begin{aligned}
& \text { (1) } \&(2) \Rightarrow \frac{\tilde{K} h}{}=\frac{\hat{\pi}^{2} H}{R^{2}} \Rightarrow \frac{r^{2}}{R^{2}}=\frac{h}{H} \\
& \text { (1) } 2(2)+(3) \Rightarrow \frac{h}{H}=1-\frac{h}{H} \Rightarrow \frac{h}{H}=\frac{1}{2} \Rightarrow h=\frac{1}{2} H \quad \& r=\frac{1}{\sqrt{2}} R . \\
& \Rightarrow V_{c}=\pi\left(\frac{1}{\sqrt{2}} R\right)^{2}\left(\frac{1}{2} H\right)=\frac{1}{4} \pi R^{2} H \quad \text { QED. }
\end{aligned}
$$

(b) $\mathcal{L}(\bar{a} \bar{b}, c, \lambda)=\bar{a} \bar{b} c+\frac{1}{2} \lambda\left(H\left(1-\frac{\bar{a}^{2}+\bar{b}^{2}}{R^{2}}\right)-c\right) \quad(\omega \log a, b, c>0)$

$$
\begin{aligned}
& \begin{array}{l|l|l}
\text { (3) } \frac{\partial L}{\partial c}=0 \Rightarrow \bar{a} \bar{b}=\frac{\lambda}{2} & \text { (4), (5) (6) } \Rightarrow 1-\frac{c}{H}=\frac{c}{H} \Rightarrow c=\frac{1}{2} H \\
\text { (4) } \frac{\partial L}{\partial \lambda}=0 \Rightarrow 1-\frac{\bar{a}^{2}+b^{2}}{R^{2}}=\frac{c}{H} & \Rightarrow 2 \bar{a}^{2}=\frac{R^{2}}{2} \Rightarrow \bar{a}=R / 2 \Rightarrow a=b=R
\end{array} \\
& \Rightarrow V_{p}=a b c=\frac{1}{2} H R^{2} \therefore \frac{V_{c}}{V_{p}}=\frac{\pi}{4} \cdot 2=\frac{\pi}{2}>1 \Rightarrow V_{c}>V_{p}
\end{aligned}
$$

(a) (i) Solve the equation

$$
\frac{d y}{d x}=-\frac{\sqrt{y}}{1+x}
$$

subject to the boundary condition $y(0)=1$.
(ii) Solve the equation

$$
\begin{equation*}
\frac{d y}{d x}+\frac{1}{3} y=e^{x} y^{4} \tag{5}
\end{equation*}
$$

subject to the boundary condition $y(0)=1$.
(b) The following partial differential equation on the given interval,

$$
\frac{\partial u}{\partial t}+u=\frac{\partial^{2} u}{\partial x^{2}}, \quad 0 \leqslant x \leqslant L, \quad t \geqslant 0
$$

has the boundary conditions $u(0, t)=u(L, t)=0$. By using the separable function $u(x, t)=X(x) T(t)$, show that the equation (\ddagger) may be written as

$$
\frac{1}{T} \frac{d T}{d t}+1=\frac{1}{X} \frac{d^{2} X}{d x^{2}}=-k^{2}
$$

with k a constant.
Determine the functions $X(x), T(t)$ satisfying the boundary conditions.
Hence, write down the general solution of the partial differential equation (\ddagger).
Solutions):
From user: niy20

From user: niy20
(ii) $\frac{d y}{d x}, \frac{1}{3} y=e^{x} y^{\prime \prime} \rightarrow$ Bernoalli ODE

Let $u=g^{1-4}=g^{-3}=\frac{1}{y^{3}}$

$$
\begin{aligned}
& \Rightarrow y=\sqrt[3]{\frac{1}{u}}=a^{-1 / 3} \\
\Rightarrow \frac{d y}{d x} & =\left(-\frac{1}{3}\right) \cdot u^{-u / 3} \cdot \frac{d u}{d x}
\end{aligned}
$$

\Rightarrow ODE Gecomes:

$$
\begin{aligned}
& -\frac{1}{3} u^{-0 / 3} \cdot \frac{d 4}{d x}+\frac{1}{3} \cdot u^{-1 / 3}=e^{x} u^{-4 / 3} / \cdot-3 \cdot u^{4 / 3} \\
& \Rightarrow \frac{d u}{d x}-u=e^{x} \rightarrow \text { lineor inhomopaceos } \\
& \Rightarrow \operatorname{Let} \mu(f)=\operatorname{exd}\left(\int^{x}-1 d x^{\prime}\right)=\exp (-x) \\
& \Rightarrow \frac{d(\mu(x) u)}{\partial x}=e^{x} \cdot e^{-x}=1 \\
& \Rightarrow \mu(x)_{0} u=x+C \text { Grbitrain constout } \\
& \Rightarrow u=\frac{x+C}{\mu(x)}=(x+C) \exp (x) \\
& y=u^{-1 / 3} \\
& \Rightarrow y=((x+C) \cdot \exp (x))^{-1 / 3}
\end{aligned}
$$

Boandory corrition : $g(0)=1$

$$
\begin{aligned}
& \Rightarrow 1=(c)^{-1 / 3} \Rightarrow c=1 \quad(c \in \mathbb{R}) \\
& \Rightarrow y=(x+1)^{-1 / 3} \exp \left(-\frac{x}{3}\right)
\end{aligned}
$$

From user: niy20
(b) $\frac{\partial u}{\partial t}+u=\frac{\partial^{2} u}{\partial x^{2}}, \quad x \in[0, L], t \geq 0$

Bount ary conditions:

$$
u(0, t)=0=u(l, t)
$$

Try separable so lution: $U(x, t)=X_{(s)}$. $T(t)$

$$
\Rightarrow X_{0} T^{\prime}+X_{0} T=X^{\prime \prime} \cdot T / \frac{1}{X_{0} T} \quad \begin{aligned}
& (X, T \neq 0 \text { since that } \\
& \text { jast yield tiviol sol. })
\end{aligned}
$$

$0 \quad \Rightarrow \frac{T^{i}}{T} \times 1=\frac{x^{\prime \prime}}{x} \quad$ (1)
LHS and RHS of (1) depeat on different, indepentent variables \Rightarrow thes mast be eqcial to a couct. :

$$
\frac{T^{\prime}}{T}+1=\frac{x^{\prime \prime}}{Y}=\text { coust. }
$$

Due to Boundory conditions, ue want an oscille tory solution for $X(x) \Rightarrow$ choose const. <0 e.g. coust $=-k^{2}$

$$
\begin{aligned}
& \Rightarrow\left[\frac{1}{T} \cdot \frac{d T}{d t}+1=\frac{1}{x} \cdot \frac{d^{2} x}{d x^{2}}=-k^{2}\right] \\
& \Rightarrow \mid X^{\prime \prime}+k^{2} x=0 \\
& \Rightarrow T^{\prime}+\left(1+k^{2}\right) T=0 \quad \\
& \Rightarrow X_{k}(x)=A_{k} \cdot \cos (k x)+B_{k} \cdot \sin \left(k_{t}\right) \\
& \\
& \Rightarrow U_{k}(x, t)=\left(A_{k} \cdot \cos \left(l_{k}\right)+B_{k} \cdot \sin \left(k_{x}\right)\right) \cdot T_{k}(t)=C_{k} \cdot \exp \left(-\left(1+k^{2}\right) t\right) \\
& \exp \left(-\left(1+k^{2}\right) t\right)
\end{aligned}
$$

Most gerend solution now is sum at all u_{x}.

From user: niy20

[^0]: ## .

