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Section A

1

The point A with position vector (1,1,1) lies in a plane. The vectors u = (1,1,2)
and v = (0,2, —1) are parallel to the same plane. Find 7, the unit normal to the plane.
Find the perpendicular distance, p, from the plane to the origin. [2]

Find all the roots of the equation z* = —8. 2]

Write down the first non-zero term of the Taylor series for the function f(z) =
In(z? + 1) about the origin, z = 0. Hence, or otherwise, state the type of stationary point
at the origin. [2]

[You may quote the Taylor series expansions for standard functions.]

4

Find the eigenvalues and normalised eigenvectors of the matrix

()

Let F be the gradient of ®(z,y,z) = xcos(y®)sinhz. Find an expression for F.
What is the curl of F'? [2]
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Let » = x4 + yj + z k be the position vector. Evaluate

(a) V(r-r), [1]

(b) V-« (ar —b), where a is a constant real number and b is a constant vector. [1]

Solve the differential equation

dy g
dr =z

for z > 1, given that y =1 when z = 1. [2]

Given F = y?zi+2yj+ %zS k, evaluate [[[ V-F dV inside a sphere of radius R,
centred at the origin. 2]
[Hint: You may find it helpful to work in spherical polar coordinates.)

Find the Fourier sine series for f(z) = sinz(1 +4cosx) defined on —m < z < m. 2]

10

Ten fair coins are tossed simultaneously. Find expressions (which need not be
evaluated) for

(a) the probability that ten heads are obtained,

(b) the probability that at least two coins give tails.

Section B
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(a) Two lines are defined by
r=2—j+Ai+j+k) and rT=6j+4k+u(—i+2j+k),

where r is the position vector, 2, j and k are the Cartesian unit vectors, and A and
1 are real parameters. Find the position vector, p, of the point of intersection of
the two lines, and the values of A and u at the point of intersection. 4]

(b) Solve the vector equation
r+(a-rb=c

for the vector r, where a, b and ¢ are constant vectors, in each of the following
cases:

()
a=i+j+k, b=2+j+2k, c=3+j+2k,

[4]
(i)
a=i+j+k, b=i—-j—k, c=-2i+j+k,
7]
(i)
a=i+j+k, b=i—j—k, c=—-i+j+k,
2]
and give a geometrical interpretation for each case. 3]
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The position vector of the centre of mass of a homogeneous solid body occupying a

volume V is 1
T == dv.
T Vﬁm

Let V be a wedge of angle 8 (0 < 8 < 27) taken from a solid sphere of radius a:

(a) Show that the centre of mass of V is located at a distance af(3) from the centre of
the sphere, where

3 . 4
£8) = S sin(38).
[10]
Sketch the graph of f(8) for 0 < 8 < 2. [3]
(b) Calculate the vector area of the curved part of the surface of V. [7]
13T
The force fields F' and G are given by
zy cosh z 2xy cosh z
F=| z?coshz |, G=| z?coshz | .
z?ysinh z zysinh z
(a) For each of the vector fields F and G, determine whether the vector field is
conservative, and, if so, find a function ® such that it is equal to —V@. 6]
(b) Evaluate [ F-de and [ G-dx along the path consisting of straight lines (0,0,0) —
(1,0,0) = (1,1,0) = (1,1,1). 6]
(c) Evaluate [ F'-dx and [ G - dz along the straight line from (0,0,0) to (1,1,1). 8]
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A device consists of two blocks. The time of failure of the first block, ¢1, is uniformly
distributed in the interval 0 < t; < T;. For t = T3, the first block has certainly failed. The
time of failure of the second block, ¢, is linearly distributed in the interval 0 < t, < Th
according to the probability density function fa(t2) = Ate. For t > Tb, the second block
has certainly failed.

(a) What is the probability density function, fi(¢;), of the time of failure of the first

block? 2]
(b) Find A and sketch fy(t2) for 0 < t2 < oc. 2]
(c) Find and sketch Pj(t), the probability that the first block fails at any time less

than ¢, where 0 < ¢ < oo. 3]

(d) Find and sketch P(t), the probability that the second block fails at any time less
than ¢, where 0 < t < occ. 3]

Assume from now on that T} =T, =T.
(e) Find and sketch P(t), the probability that both blocks have failed by time ¢, where

0<t<oo. 4]

(f) Find and sketch R(t), the probability that at least one of the blocks has failed by
time t, where 0 < ¢ < co. Mark on your graph the inflexion point(s) (if any) and
calculate their coordinates. (6]

15Y

(a) The function f(t) satisfies the differential equation

d*f . df 4t
8y T12f =127

For the following sets of boundary conditions determine whether the equation has
solutions consistent with all three conditions and, if so, find those solutions.

(i) f([]) =0, %(0) =0, f(l‘[l\/i) =0,
@) 70) =0, 0)= 2, fmv3) =0,

[10]
(b) A solution of the differential equation
d’y | ,dy a
dz? + QE +y=4de
takes the value 1 when z = 0 and the value e~! when z = 1. What is its value when 0]
T =27 10
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(a) State the condition on the partial derivatives of P and @ for the differential form

P(z,y)dz + Q(z,y) dy

to be exact. If this condition is not satisfied, show that the differential form can be
made exact by multiplying by an integrating factor of the form u(z), provided that

1 (0P _0Q

Q\dy Oz
is a function of = only. What is the corresponding condition for the differential form
to have an integrating factor of the form u(y)?

Solve the following differential equations using an integrating factor:

(1)

d
2$£+3m+y=ﬂ,

(i)
1 d_.y N

(m32$+y5m2$)dm y?=0.

(b) Use the change of variables y(z) = u(z)z to solve the differential equation

(y—m)g—g+2m+3y=(].
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(a)

(c)

(d)
(e)
(f)

187

In the context of matrices, describe what is meant by an eigenvector equation.

Four springs, each having stiffness constant &, are used to hold three masses m in a
line between two rigid supports. It can be shown that the dynamical behaviour of
the system is described by the following three coupled differential equations:

mi = —kx; + k(zs — z1),
mis = —k(.’l:g — .1‘1) + k(.‘l’.‘g - .’.Ez),
miy = —k(zz — z3) — kzg,

where z1(t), z2(t) and z3(t) are the positions of the masses, along the line of the
springs, relative to their static positions, and the double dot denotes the second
derivative with respect to time ¢.

Show that the substitutions
z; = a; cos(wt) , i=1,2,3,

where a; is independent of ¢, transform the differential equations into a set of
simultaneous algebraic equations.

Write down a single matrix equation, in the form of an eigenvector equation, that
describes the system.

Find the eigenvalues and normalised eigenvectors that satisfy this equation.
Show that the eigenvectors are orthogonal.

For the solution with the largest value of |w|, sketch 1, z9 and 3 versus time.

[3]

[3]
[3]



A certain electrical circuit produces a voltage waveform Vi(f) that is periodic in
time. The waveform can be written in terms of the Fourier series

1 o0 o0 .
Vi(t) = 520 ek Z ay, cos(nwt) + Z by, sin(nuwt) . ()
n=1 n=1
(a) If the period of the waveform is T', write down an expression for w. 1]

(b) Starting with (), demonstrate that the coefficients a,, and b,, are given by
9 (T
an = = f Vi(t) cos(nwt) dt ,
T Jo

2 T
by = = f Vi (t) sin(nwt) dt .
T Jo

(c) Suppose that the periodic voltage has the form Vi(t) = Vpsin(wt) for 0 < ¢ < 7'/2
and Vj(t) =0 for T/2 < t < T. Derive expressions for the Fourier coefficients, and
write out the first 5 non-zero terms (in order of increasing frequency) of the series
expansion explicitly. 8]

(d) Create a new function Vz(f) by shifting Vi(¢) in time by 7'/2. By noting that
Vi(t) — Va(t) = Vpsin(wt), and without evaluating the Fourier integrals explicitly,
write out the first 5 non-zero terms of the series expansion of V5(t). 5]
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(a)

20T*

Explain (without proof) how the method of Lagrange multipliers is used to find the
stationary points of the function f(z,y) subject to the constraint g(z,y) = ¢, where
c is a constant. How is the method generalized to handle a function of more than
two variables subject to one or more constraints?

The function f(z;,z9,23,...,Z,) of n variables is defined by

mn
f==) =zinz;,
i=1

where the variables z; are positive and subject to the constraint

Show that the stationary point of f subject to this constraint is located where
x; = 1/n for each i, and calculate the stationary value of f.

If a further constraint

T
zﬂléyi =Y
i=1

is applied, where 41,¥2,Y3,...,Un and Y are given constants, show that the
stationary point of the same function f is located instead where

I =a exp(_by'i) Y

where a and b are constants. Write down two equations that determine the values
of a and b.

[6]

[7]

[7]



A fluid flows with velocity u(z,t) along a channel bounded by walls at z = 0 and
x = 1. The fluid velocity satisfies the partial differential equation

ou 8%y .
5% = Va2 + G'sin(nrz), ()

where v > 0 and G are real constants and n = 1 is an integer. It also satisfies the boundary

conditions u(0,1) = u(1,%) = 0 and the initial condition u(z,0) = 0.

(a) For sufficiently large time ¢ the fluid velocity tends to a steady-state solution ug(z),
independent of ¢, that satisfies equation (f) and the same boundary conditions. Find
ug(z).

(b) Now consider
(z,t) = u(z,t) — us(z).

Find the partial differential equation, analogous to equation (1), satisfied by (z, t),
and show that this equation is independent of (. What are the boundary conditions
that @ must satisfy, and what is the initial condition for 47

(c) By means of separation of variables, find a solution for @ of the form

i(z,t) = f(t)g(=),
where t]i}‘[glc f@) =0.

(d) Hence determine the fluid velocity u(z,t) and the total flow rate

Qm=£3@gm.

[10]



