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1A

(a) Explain what it means for the differential operator £ to be self-adjoint on the interval
a<zr<b 2]

The eigenfunctions y,(z) of a self-adjoint operator L satisfy

LYyn = Awyn,

for some weight function w(z) > 0. Show that for appropriate boundary conditions,
eigenfunctions with distinct eigenvalues are orthogonal, i.e.,

b
fa W@y (@) (@) da = 0

for Am # An. [4]

(b) Consider the eigenvalue problem

d*y, | dy
(1 — p2y 20 Zon 2
(1 z ) da2 t+o dz " Yn (*)

on the interval —1 € z < 1, with the boundary conditions y,(—1) = 0 and y,(1) = 0.

(i) Express () in Sturm-Liouville form, and hence determine the weight function
w(z). (5]

(i) By using the substitution z = cos#, solve (%) with the given boundary
conditions to show that n must be an integer, and construct the normalised
eigenfunctions for n > 0. (6]

(iii) Verify explicitly the orthogonality of your eigenfunctions for n # m. (3]
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