2014 Mathematics (1)

This pdf was generated from questions and answers contributed by members of the public to Christopher Lester's tripos/example-sheet solution exchange site http://cgl20.user.srcf.net/. Nothing (other than raven authentication) prevents rubbish being uploaded, so this pdf comes with no warranty as to the correctness of the questions or answers contained. Visit the site, vote, and/or supply your own content if you don't like what you see here.
This pdf had url http://cgl20.user.srcf.net/camcourse/paperpdf/8? withSolutions=1. This pdf was creted on Wed, 01 May 2024 21:43:16 +0000.

Section A

1

No image has yet been uploaded for this question
No soution has yet been submitted for this question.

2

No image has yet been uploaded for this question No soution has yet been submitted for this question.

3

No image has yet been uploaded for this question No soution has yet been submitted for this question.

4

No image has yet been uploaded for this question
No soution has yet been submitted for this question.

5

No image has yet been uploaded for this question No soution has yet been submitted for this question.

6

No image has yet been uploaded for this question No soution has yet been submitted for this question.

7

No image has yet been uploaded for this question No soution has yet been submitted for this question.

8

No image has yet been uploaded for this question
No soution has yet been submitted for this question.

9

No image has yet been uploaded for this question
No soution has yet been submitted for this question.

10

No image has yet been uploaded for this question No soution has yet been submitted for this question.

Section B

11X
No image has yet been uploaded for this question

Solution(s):

From user: ar857
(12)

2014 Paper $1{ }^{1-4+7}$
a)

$$
\begin{aligned}
& \left|\begin{array}{ccc}
1 & -4 & 7 \\
-4 & 4 & -4 \\
7 & -4 & 1
\end{array}\right| \quad T V=6 \quad\left(\begin{array}{ccc}
1 / \sqrt{3} & 1 / \sqrt{2} & 1 / \sqrt{6} \\
1 / \sqrt{2} & 0 & 2 / \sqrt{6} \\
\sqrt{2} & -1 / \sqrt{2} & \frac{1}{2}
\end{array}\right) \\
& =-12+4 \cdot 24+7 \cdot(-12)=8 \cdot(-12)+4 \cdot 24<0
\end{aligned}
$$

\Rightarrow at lest 1 eigenvalue is $=0$
b)

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1-\lambda & -4 & 7 \\
-4 & 4-\lambda & -4 \\
7 & -4 & 1-\lambda
\end{array}\right)=\left(1-2 \lambda+\lambda^{2}\right)(4-\lambda)+(1-\lambda)(-16) \\
& +4 \cdot(-4+4 \lambda)+4 \cdot(+407)+7 \cdot(16)-7 \cdot(28-7 \lambda) \\
& =-\lambda^{3}+2 \lambda^{2}+4 \lambda^{2}-\lambda-8 \lambda+16 \lambda+16 \lambda+49 \lambda+0 \\
& =-\lambda \cdot\left(\lambda^{2}-6 \lambda-72\right)=-\lambda \cdot(\lambda-12)(\lambda+6) \\
& \lambda_{1}=0 \quad \lambda_{2}=-6 \quad \lambda_{3}=12 \\
& \left|\begin{array}{ccc}
1 & -1 & 7 \\
0 & -12 & 24 \\
0 & 0 & 0
\end{array}\right| \quad \text { for } \lambda_{1}=0 \quad e_{1}=\frac{1}{\sqrt{6}}\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right) \\
& \left|\begin{array}{ccc}
7 & -1 & 7 \\
-1 & 10 & -4 \\
7 & -1 & 7
\end{array}\right| \text { for } \lambda_{2}=-6 \quad e_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) \\
& \left|\begin{array}{ccc}
-11 & -4 & 7 \\
-11 & -8 & -4 \\
7 & -4 & -11
\end{array}\right| \rightarrow\left|\begin{array}{ccc}
1 & 2 & 1 \\
0 & 18 & 18 \\
0 & 0 & 0
\end{array}\right| \quad \rho_{3}=\frac{1}{\sqrt{3}}\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right) \text { for } \lambda_{3}=42
\end{aligned}
$$

Verity orechogovalizy: $\quad\left(\begin{array}{c}1 \\ 1 \\ 1 \\ 1\end{array}\right) \cdot\left(\begin{array}{c}1 \\ 0 \\ -2\end{array}\right)=0$

$$
A e_{1}=0 \quad A e_{2}=-6 e_{2} A e_{3}=-12 e_{2}\binom{1}{1} \cdot\left(\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
-2
\end{array}\right)=0
$$

c) $A r \cdot e=0$

$$
\begin{aligned}
& r=a e_{1}+b e_{2}+c e_{3}=\left(e_{1}\left|e_{2}\right| e_{3}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \\
& A r=A\left(e_{1} e_{2} e_{3}\right)\binom{a}{z} \\
& \left.\frac{1}{6}\left(\begin{array}{ccc}
1 & -4 & 7 \\
-4 & 4 & -4 \\
7 & -4 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 1 \\
\frac{2}{1} & 0 & -1 \\
1 & -1 & 1
\end{array}\right)\right)_{c}^{a}=\frac{1}{c}=\frac{1}{6}\left(\begin{array}{ccc}
0 & -6 & 12 \\
0 & 0 & -12 \\
0 & 6 & 12
\end{array}\right)\binom{0}{b}=\left(\begin{array}{ccc}
0 & -1 & 2 \\
0 & 0 & -2 \\
0 & 6 \\
1 & 2 \\
1
\end{array}\right) \\
& \text { Are }=0 \text { ger BUT THM scaly } \\
& (\text { (2) off }(-101) \cdot(x y z)=0 \quad-x+z=0 \quad x=z \quad \text { ye }(1-11)(x y z)=1) \text {, } 100 \\
& (1-11)(x y z)=0 \quad x-y+z=0 \quad y=2 x \text { i scaling }
\end{aligned}
$$

No image has yet been uploaded for this question
Solutions):
From user: ar857

13Y

No image has yet been uploaded for this question

Solutions):

From user: ar857

1842014 I
ai) $y^{\prime}+3 y=8 \quad y(0)=4$

$$
\begin{aligned}
& \frac{d 5}{d x}=8-3 y \\
& \int \frac{1}{8-3 y} d y=\int d x \\
& -1 \\
& -1
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\frac{1}{4} \ln (8-3 y)=x+c \right\rvert\, \cdot-3 \\
& \ln (1-3 y)=-2 x+C
\end{aligned}
$$

$$
\ln (1-3 y)=-3 x+C
$$

$$
1-3 y=e^{-3 x} \cdot K
$$

$$
y=\frac{-k e^{-3 x}+8}{3} \quad y(0)=\frac{-k+8}{3}=4 \Rightarrow k=-4
$$

$$
y=\frac{4}{3} e^{-3 x}+\frac{8}{3}
$$

ii) $y^{\prime}-y \cos x=\frac{1}{2} \sin 2 x \quad \quad \mu=e^{\int-\cos x}=e^{-\sin x}$ $y^{\prime} \cdot e^{-\sin x}-\cos x y e^{-\sin x}=\sin x \cos x e^{-\sin x}$

$$
\begin{aligned}
& \frac{a}{d x}\left(e^{-\sin x} y\right)=\sin x \cdot \cos x e^{-\sin x} \\
& e^{-\sin x} y=-\sin x e^{-\sin x}+\int \cos x e^{-\sin x}=(-\sin x-1) e^{-\sin x}+c
\end{aligned}
$$

$$
y=(-\sin x-1)+e^{4} e^{\sin x}
$$

$$
\begin{aligned}
& y=(-\sin x-1)+c e e^{\sin x} \\
& y(0)=-1+c=0 \Rightarrow c=1
\end{aligned}
$$

$$
y=e^{\sin x}-(\sin x+1)
$$

b) $y^{\prime \prime}+7 y^{\prime}+12 y=2 e^{-3 x}$
$\lambda^{2}+7 \lambda+12=0 \quad \Rightarrow \lambda_{2}=-3 \quad \lambda_{2}=-4$

$$
y_{c}=c_{1} e^{-3 x}+c_{2} e^{-4 x}
$$

$$
y_{p}=k \times e^{-3 x}
$$

$$
\begin{aligned}
& L_{y p}=k e^{-3 x}(-3-3+9 x+7-21 x+k x)=2 e^{-3 x} \quad \Rightarrow k=2 .
\end{aligned}
$$

$$
y=c_{1} e^{-3 x}+c_{2} e^{-4 x}+2 x e^{-3 x}
$$

$$
\left.\begin{array}{l}
y=c_{1} e^{-3 x}+c_{2} e^{-4 x}+2 x e^{-3 x} \\
y(0)=c_{1}+c_{2}+0=1 \\
y^{\prime}(0)=-3 c_{1}-4 c_{2}+2=0 \quad
\end{array}\right\} \begin{aligned}
& c_{2}=-1 \\
& c_{1}=2
\end{aligned}
$$

$14 Z$
No image has yet been uploaded for this question

Solutions):

From user: ar857

(44)

a) $r_{1}=a+\lambda \hat{b}$

$r_{2}=c+\mu \hat{d}$

$d=k(a-x b \cdot b x d) \quad(a-c) \cdot \frac{b \times d}{1 b \times d \mid}$

x is a plane of pomes, plane is distance k from origin

ii) $p-q \neq 0$
vectors
in plane

$$
X=k \frac{p}{|p|}+N(p \times q)+\lambda\left(q-(p q) \frac{p}{|p|}\right)
$$

$$
\overbrace{x}^{a q_{9}^{p}}
$$

$$
q q: \quad x=\lambda p+\mu q+2 q \wedge q
$$

$$
\text { go } \Rightarrow
$$

$$
\text { If } p z=0
$$

$$
4 x^{2}+y=\frac{\cos +t^{2}}{1+r^{2}}=\frac{1}{1+r^{2}}
$$

$$
\frac{\cos t}{\sqrt{1+t^{2}}}=r \sin \cos \phi \quad r^{2}=\frac{\cos ^{2}+\sin ^{2}+t^{2}}{1+t^{2}}=1 \quad r=1
$$

$$
\begin{array}{ll}
\frac{\sin \epsilon}{\sqrt{1+t^{2}}}=r \sin \theta \sin \phi & \sin \theta=\frac{1 \mid f t^{2}}{\sqrt{1+t^{2}}} \\
\cos \theta=\frac{t}{\sqrt{1+t^{2}}}
\end{array}
$$

$$
\frac{t}{\sqrt{1+e^{2}}}=r \cos \sigma
$$

kas如接

$$
\theta=\cos ^{-1}\left(\frac{t}{\sqrt{1+t^{2}}}\right)
$$

$$
\operatorname{coc} \theta=t
$$

$$
\begin{array}{ll}
V(t)=1 \\
\theta(t)=c u e^{-1}(t) \\
\phi(t)=t
\end{array}
$$

15W

No image has yet been uploaded for this question

Solutions):

From user: ar857
a)

2014 I 15 (absowere page)

$$
=\frac{1}{2} \int_{-\pi / 3}^{\pi / 3} 1+\cos \phi^{2}+2 \cos \psi-\frac{9}{4} d \psi
$$

$=\int_{0}^{\pi / 3} 1+\int_{0}^{\pi / 3} 2 \cos \varphi+\int_{0}^{\pi / 3} \frac{1}{2}+\frac{\cos 2 \varphi}{2}+\int_{0}^{\pi / 3}-\frac{q}{4}$

$$
=\pi / 3+2 \cdot \frac{\sqrt{3}}{2}+\frac{\pi}{6}+\frac{1}{4} \frac{\sqrt{3}}{2}-\frac{9}{4} \pi
$$

$$
=\pi \cdot\left(\frac{1}{3}+\frac{1}{6}-\frac{3}{4}\right)+\sqrt{3} \cdot\left(1+\frac{1}{8}\right)=\frac{9}{8} \sqrt{3}-\frac{1}{4} \pi
$$

b) later, see below
c)

$$
\begin{aligned}
& \int_{-\pi / 3}^{\pi / 3} \int_{3 / 2}^{1+\cos \phi} \frac{x+y+x y}{x^{2}+y^{2}} d x d y \\
& \int_{-\pi / 3}^{\pi / 3} \int_{3 / 2}^{1+\cos \varphi} \frac{\gamma(\cos \varphi+\sin \phi+r \sin \varphi \cos \varphi)}{\psi^{2}} d r d v d \phi \\
& =\int_{-\pi / 3}^{\pi / 3} \int_{3 / 2}^{1+\cos \psi} \cos \psi+\sin \psi+r \sin \psi \cos \psi d r d \phi \\
& x+y+x y \\
& \frac{x^{2}+5^{2}}{\text { symetic on } y \Rightarrow} \\
& \int_{-\pi / 3}^{\pi / 3} \int_{\frac{3}{2}}^{1+\cos 4} \frac{x}{x^{2}-y^{2}} d x d y=\int_{-\pi / 3}^{\pi / 3} \int_{\frac{3}{2}}^{1+\operatorname{coc} \psi} \cos \phi d v d \phi \\
& \int_{-\pi / 3}^{\pi / 2} \cos 4+\cos 4-3 / 2 \cos \phi=\int_{-\pi}^{\pi / 3} \cos +\frac{1}{2}+\frac{\cos 24}{2}-\frac{3}{2} \cos
\end{aligned}
$$

From user: ar857

$16 Z$

No image has yet been uploaded for this question

Solution(s):

From user: ar857

$$
2014 \text { I } 16
$$

$$
\text { a) } f=2 x^{2}+6 x y^{2}-3 y^{3}-150 x
$$

$$
f_{y}=6 x^{2}+6 y^{2}-150
$$

$$
f_{y}=12 x y-9 y^{2}
$$

$$
f x x=12 x \quad f y y=12 x \quad f x y=12 y
$$

$$
f \quad=0 \quad x^{2}+y^{2}-23=0 \quad x=(5-y)(5+y)
$$

$$
f y=0 \quad 3 y \cdot(4 x-3 y) \quad y=0 \quad x=\frac{3}{4} y \quad \frac{9}{16} y^{2}=25-y^{2}
$$

stationary poles

$$
(5,5)(5,0) \text { min }(3,4) \text { saddle }
$$

$$
\begin{aligned}
& y= \pm 4 \\
& x= \pm 3
\end{aligned}
$$

b) $q=x^{4}+y^{4}-36 x y$

$$
g x=4 x^{3}-36 y=4 \cdot\left(x^{3}-9 y\right) \quad g x x=12 x^{2}
$$

$$
g y=4 y^{3}-36 x=4 \cdot\left(y^{3}-9 x\right) \quad g y y=12 y^{2}
$$

$$
g_{x y}=-36
$$

$$
x^{3}=9 y \quad(0,0) \text { saddle }
$$

$$
y^{3}=9 x
$$

$$
x^{9}=9^{3} \cdot 9 x
$$

$$
\begin{array}{ll}
x^{7}=9^{3} \cdot 9 x \\
x^{8}=9^{4} \quad x= \pm 3 \quad y= \pm 3 \quad(3,3) \text { min } \\
(-3,-3) \text { min }
\end{array}
$$

17S

No image has yet been uploaded for this question No solution has yet been submitted for this question.

No image has yet been uploaded for this question
No soution has yet been submitted for this question.

19Y*

No image has yet been uploaded for this question No soution has yet been submitted for this question.

20R*

No image has yet been uploaded for this question No soution has yet been submitted for this question.

