2014 Mathematics (2)

This pdf was generated from questions and answers contributed by members of the public to Christopher Lester's tripos/example-sheet solution exchange site http://cgl20.user.srcf.net/. Nothing (other than raven authentication) prevents rubbish being uploaded, so this pdf comes with no warranty as to the correctness of the questions or answers contained. Visit the site, vote, and/or supply your own content if you don't like what you see here.

This pdf had url http://cgl20.user.srcf.net/camcourse/paperpdf/9?withSolutions=1.

This pdf was creted on Thu, 18 Apr 2024 00:23:43 +0000.

Section A

1

No image has yet been uploaded for this question No soution has yet been submitted for this question.

2

No image has yet been uploaded for this question No soution has yet been submitted for this question.

3

No image has yet been uploaded for this question No soution has yet been submitted for this question.

4

No image has yet been uploaded for this question No soution has yet been submitted for this question.

5

No image has yet been uploaded for this question No soution has yet been submitted for this question.

6

No image has yet been uploaded for this question No soution has yet been submitted for this question.

7

No image has yet been uploaded for this question No soution has yet been submitted for this question.

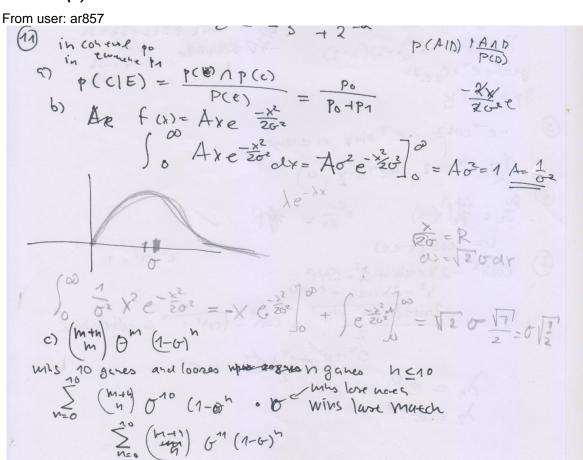
8

No image has yet been uploaded for this question No soution has yet been submitted for this question.

9

No image has yet been uploaded for this question No soution has yet been submitted for this question.

10


No image has yet been uploaded for this question No soution has yet been submitted for this question.

Section B

11S

No image has yet been uploaded for this question

Solution(s):

12X

No image has yet been uploaded for this question

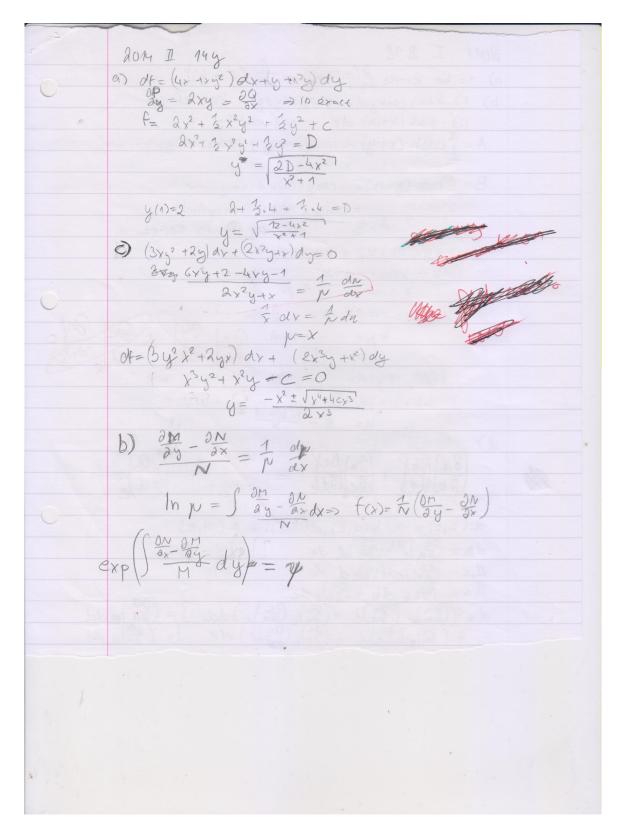
Solution(s):

$$\begin{array}{l} (1) \text{ orthogonal matrix for white } & AT = ATA = I \\ (1) \text{ i.e. an always two elice } & AA^T = A^TA = I \\ (1) \text{ ii.e. an always two elice } & AA^T = A^TA = I \\ (1) \text{ iii.e. an always two elice } & AA^T = A^TA = I \\ (2) \text{ iii.e. an always two elice } & AA^T = A^T = AB = (AB)^T = BTA^T \\ (2) \text{ iii.e. AT } & ATA = I = AA^T = I \\ (3) \text{ iii.e. AT } & ATA = I = AA^T = I \\ (4) \text{ iii.e. AT } & BTB = I = BBT \\ (4) \text{ iii.e. AT } & ATA = AA^T = I \\ (4) \text{ iii.e. AT } & ATA = ATA = I \\ (4) \text{ iii.e. AT } & ATA = ATA = I \\ (4) \text{ iii.e. AT } & ATA = ATA = I \\ (4) \text{ iii.e. AT } & ATA = ATA = I \\ (4) \text{ iii.e. AT } & ATA = ATA = I \\ (4) \text{ iii.e. AT } & ATA = ATA = I \\ (4) \text{ iii.e. AT } & ATA = ATA = I \\ (4) \text{ iii.e. AT } & ATA = ATA = I \\ (4) \text{ iii.e. AT } & ATA = ATA = I \\ (4) \text{ iii.e. AT } & ATA = ATA = I \\ (4$$

13W

No image has yet been uploaded for this question

Solution(s):


a) i)
$$\int (\cos h)^2 + (\cos h) - \sin h^2 + \sin h) \cdot oh = \int (1 + \cos h) + t + \sin h) \cdot oh = x + \sin h + c$$

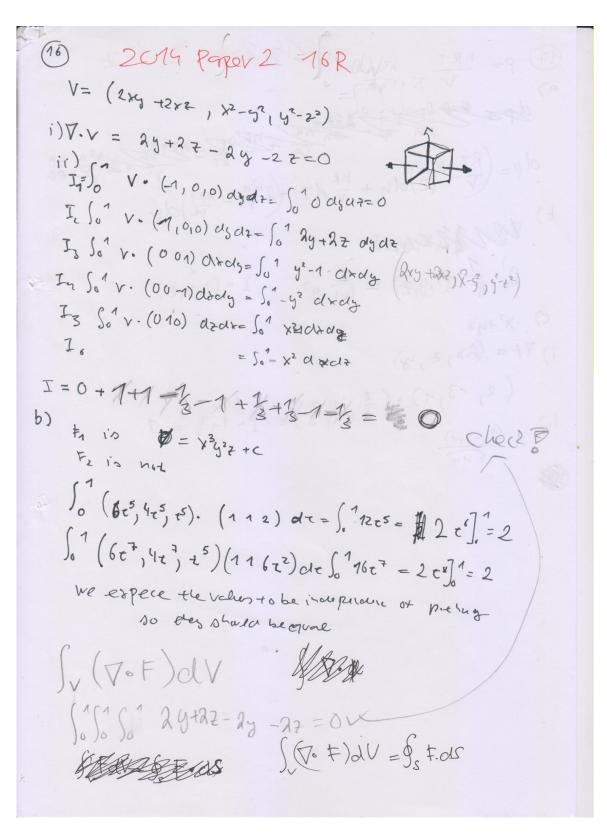
ii) $\int \frac{k-1}{3} + \frac{1}{3} \cdot \frac{1}{$

14Y

No image has yet been uploaded for this question

Solution(s):

15T


No image has yet been uploaded for this question

Solution(s):

16R

No image has yet been uploaded for this question

Solution(s):

17**Z**

No image has yet been uploaded for this question

Solution(s):

17
$$P = \frac{hR7}{V} - \frac{hR9}{V^2}$$
 $dP = \frac{R7}{V} - \frac{2h9}{V^2} dh + \frac{hR}{V} dT + \frac{2h^3a}{V^2} - \frac{hP7}{V^2} dV$

b) $V_3 = \frac{V_3}{V_4} + \frac{V_4}{V_4} + \frac{hR}{V} dT + \frac{hR}{V^2} + \frac{hR7}{V^2} dV$
 $g' = \frac{1}{V} (x_1 y_1 z) = \frac{V}{|V|} g' \qquad Y = (x_1 y_1 z)$

c) $X^2 + y_2 = \frac{1}{V} (x_1 y_1 z) = \frac{1}{V} (x_$

18T

No image has yet been uploaded for this question No soution has yet been submitted for this question.

19R*

No image has yet been uploaded for this question No soution has yet been submitted for this question.

20Z*

No image has yet been uploaded for this question No soution has yet been submitted for this question.